Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44016
Título: | Writer identification on mobile device based on handwritten | Autores/as: | Kutzner, Tobias Travieso, Carlos M. Bönninger, Ingrid Alonso, Jesús B. Vásquez, Jose Luis |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Writer Identification Mobile Device Handwritten-Based Biometric |
Fecha de publicación: | 2013 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Publicación seriada: | Proceedings - International Carnahan Conference on Security Technology | Conferencia: | 47th International Carnahan Conference on Security Technology (ICCST) | Resumen: | This paper deals with exploring of the potential of writer identification by handwriting on a touch-screen phone for an application in access control systems. Our aim was to examine the possibility of writer recognition by a biometric model based on handwritten password. A mobile phone-server solution based on distributed blocks is proposed. The implemented approach performs a pre-processing block, in order to segment the handwritten password on the mobile phone. It also applies a feature extraction in order to have our biometric in-formation, running on the server. The classification is done with 10 online and offline features and is classified by a Naive Bayes classifier. We have used a database of 108 handwritten genuine (12 samples came from nine users) and 36 impostors (four false samples from nine users) written on a HTC Desire mobile phone with Android 2.2. The proposed system reached an accuracy of 96.87% in writer verification. The false acceptance rate of the proposed system is 11.11%. | URI: | http://hdl.handle.net/10553/44016 | ISBN: | 978-1-4799-0889-9 | ISSN: | 1071-6572 | DOI: | 10.1109/CCST.2013.6922063 | Fuente: | Proceedings - International Carnahan Conference on Security Technology [ISSN 1071-6572], (6922063) |
Colección: | Actas de congresos |
Citas SCOPUSTM
5
actualizado el 01-dic-2024
Visitas
96
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.