Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43999
DC FieldValueLanguage
dc.contributor.authorLopez-De-Ipina, K.en_US
dc.contributor.authorAlonso, J. B.en_US
dc.contributor.authorTravieso, C. M.en_US
dc.contributor.authorEgiraun, H.en_US
dc.contributor.authorEcay, M.en_US
dc.contributor.authorEzeiza, A.en_US
dc.contributor.authorBarroso, N.en_US
dc.contributor.authorMartinez-Lage, P.en_US
dc.date.accessioned2018-11-21T19:28:05Z-
dc.date.available2018-11-21T19:28:05Z-
dc.date.issued2013en_US
dc.identifier.isbn9781479908288en_US
dc.identifier.urihttp://hdl.handle.net/10553/43999-
dc.description.abstractAlzheimer's disease (AD) is the most prevalent form of progressive degenerative dementia. Its diagnosis made by analyzing many biomarkers and test but nowadays a definitive confirmation requires a post-mortem examination of the patients' brain tissue. The purpose of this paper is to examine the potential of applying intelligent algorithms to the results obtained from non-invasive analysis methods on suspected patients in order to contribute to the improvement of both early diagnosis of AD and its degree of severity. This work deals with Emotional Response Automatic Analysis (ERAA) based on classical and new speech features: Emotional Temperature (ET) and Higuchi Fractal Dimension (FD). The method has the great advantage of being, in addition to non-invasive, of low cost and without any side effects. This is a pre-clinic studio oriented to validate future diagnosis tests and biomarkers. ERAA showed very satisfactory and promising results for the definition of features oriented to early diagnosis of AD. © 2013 IEEE.
dc.languagespaen_US
dc.relation.ispartofINES 2013 - IEEE 17th International Conference on Intelligent Engineering Systems, Proceedingsen_US
dc.sourceINES 2013 - IEEE 17th International Conference on Intelligent Engineering Systems, Proceedings (6632783), p. 61-64en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleAutomatic analysis of emotional response based on non-linear speech modeling oriented to Alzheimer disease diagnosisen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference17th IEEE International Conference on Intelligent Engineering Systems, INES 2013
dc.identifier.doi10.1109/INES.2013.6632783
dc.identifier.scopus84889645339-
dc.contributor.authorscopusid56263484400-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid55765445200-
dc.contributor.authorscopusid55520375900-
dc.contributor.authorscopusid14022747600-
dc.contributor.authorscopusid23392059500-
dc.contributor.authorscopusid6603115791-
dc.description.lastpage64-
dc.identifier.issue6632783-
dc.description.firstpage61-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateDiciembre 2013
dc.identifier.conferenceidevents121490
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate19-06-2013-
crisitem.event.eventsenddate21-06-2013-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2024

Page view(s)

93
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.