Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43999
Título: | Automatic analysis of emotional response based on non-linear speech modeling oriented to Alzheimer disease diagnosis | Autores/as: | Lopez-De-Ipina, K. Alonso, J. B. Travieso, C. M. Egiraun, H. Ecay, M. Ezeiza, A. Barroso, N. Martinez-Lage, P. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Fecha de publicación: | 2013 | Publicación seriada: | INES 2013 - IEEE 17th International Conference on Intelligent Engineering Systems, Proceedings | Conferencia: | 17th IEEE International Conference on Intelligent Engineering Systems, INES 2013 | Resumen: | Alzheimer's disease (AD) is the most prevalent form of progressive degenerative dementia. Its diagnosis made by analyzing many biomarkers and test but nowadays a definitive confirmation requires a post-mortem examination of the patients' brain tissue. The purpose of this paper is to examine the potential of applying intelligent algorithms to the results obtained from non-invasive analysis methods on suspected patients in order to contribute to the improvement of both early diagnosis of AD and its degree of severity. This work deals with Emotional Response Automatic Analysis (ERAA) based on classical and new speech features: Emotional Temperature (ET) and Higuchi Fractal Dimension (FD). The method has the great advantage of being, in addition to non-invasive, of low cost and without any side effects. This is a pre-clinic studio oriented to validate future diagnosis tests and biomarkers. ERAA showed very satisfactory and promising results for the definition of features oriented to early diagnosis of AD. © 2013 IEEE. | URI: | http://hdl.handle.net/10553/43999 | ISBN: | 9781479908288 | DOI: | 10.1109/INES.2013.6632783 | Fuente: | INES 2013 - IEEE 17th International Conference on Intelligent Engineering Systems, Proceedings (6632783), p. 61-64 |
Colección: | Actas de congresos |
Citas SCOPUSTM
8
actualizado el 01-dic-2024
Visitas
93
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.