Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43994
Título: On the alzheimer’s disease diagnosis: Automatic spontaneous speech analysis
Autores/as: Lopez-De-Ipiña, K.
Solé-Casals, J.
Alonso, J. B. 
Travieso, C. M. 
Ecay, M.
Martinez-Lage, P.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Dementia
Alzheimer’s disease diagnosis
Spontaneous speech
Emotion recognition
Fecha de publicación: 2014
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 5th International Conference on Agents and Artificial Intelligence (ICAART 2013) 
Resumen: Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia; it has a high socioeconomic impact in Western countries. Therefore, it is one of the most active research areas today. Alzheimer’s disease is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a postmortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early AD detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of AD by noninvasive methods. The purpose is to examine, in a pilot study, the potential of applying machine learning algorithms to speech features obtained from suspected Alzheimer’s disease sufferers in order to help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: spontaneous speech and emotional response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of AD patients
URI: http://hdl.handle.net/10553/43994
ISBN: 978-3-662-44993-6
ISSN: 0302-9743
DOI: 10.1007/978-3-662-44994-3_14
Fuente: Transactions on Computational Collective Intelligence XVII. Lecture Notes in Computer Science, v. 8790 LNCS, p. 272-281
Colección:Capítulo de libro
Vista completa

Visitas

63
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.