Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43974
Título: | Feature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer's disease | Autores/as: | López-de-Ipiña, K. Alonso-Hernández, J. B. Solé-Casals, J. Travieso-González, C. M. Ezeiza, A. Faúndez-Zanuy, M. Calvo, P. M. Beitia, B. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Emotional responseAutomatic speech analysisEmotion recognitionNon-linear modelingFractal dimensionEmotional temperature | Fecha de publicación: | 2015 | Editor/a: | 0925-2312 | Publicación seriada: | Neurocomputing | Conferencia: | IEEE 17th International Conference on Intelligent Engineering Systems (INES) | Resumen: | Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD. | URI: | http://hdl.handle.net/10553/43974 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2014.05.083 | Fuente: | Neurocomputing[ISSN 0925-2312],v. 150, p. 392-401 |
Colección: | Artículos |
Citas SCOPUSTM
23
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
20
actualizado el 17-nov-2024
Visitas
74
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.