Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43974
Campo DC Valoridioma
dc.contributor.authorLópez-de-Ipiña, K.en_US
dc.contributor.authorAlonso-Hernández, J. B.en_US
dc.contributor.authorSolé-Casals, J.en_US
dc.contributor.authorTravieso-González, C. M.en_US
dc.contributor.authorEzeiza, A.en_US
dc.contributor.authorFaúndez-Zanuy, M.en_US
dc.contributor.authorCalvo, P. M.en_US
dc.contributor.authorBeitia, B.en_US
dc.contributor.otherFaundez-Zanuy, Marcos-
dc.contributor.otherAlonso-Hernandez, Jesus B.-
dc.contributor.otherLopez-de-Ipina, Karmele-
dc.contributor.otherSole-Casals, Jordi-
dc.contributor.otherEzeiza, Aitzol-
dc.contributor.otherTravieso-Gonzalez, Carlos M.-
dc.date.accessioned2018-11-21T19:16:49Z-
dc.date.available2018-11-21T19:16:49Z-
dc.date.issued2015en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://hdl.handle.net/10553/43974-
dc.description.abstractAlzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.en_US
dc.languagespaen_US
dc.publisher0925-2312-
dc.relation.ispartofNeurocomputingen_US
dc.sourceNeurocomputing[ISSN 0925-2312],v. 150, p. 392-401en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherEmotional responseAutomatic speech analysisEmotion recognitionNon-linear modelingFractal dimensionEmotional temperatureen_US
dc.titleFeature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer's diseaseen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.relation.conferenceIEEE 17th International Conference on Intelligent Engineering Systems (INES)
dc.identifier.doi10.1016/j.neucom.2014.05.083
dc.identifier.scopus84922653295-
dc.identifier.isi000346952300006-
dcterms.isPartOfNeurocomputing-
dcterms.sourceNeurocomputing[ISSN 0925-2312],v. 150, p. 392-401-
dc.contributor.authorscopusid56263484400-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid14018739300-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid14022747600-
dc.contributor.authorscopusid6701452104-
dc.contributor.authorscopusid56513541100-
dc.contributor.authorscopusid56433495500-
dc.description.lastpage401-
dc.description.firstpage392-
dc.relation.volume150-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000346952300006-
dc.contributor.daisngid1399740-
dc.contributor.daisngid418703-
dc.contributor.daisngid642260-
dc.contributor.daisngid265761
dc.contributor.daisngid29266487-
dc.contributor.daisngid1492715-
dc.contributor.daisngid259157-
dc.contributor.daisngid29646760
dc.contributor.daisngid171072-
dc.contributor.daisngid6336762-
dc.identifier.investigatorRIDF-6503-2012-
dc.identifier.investigatorRIDN-5977-2014-
dc.identifier.investigatorRIDK-4379-2013-
dc.identifier.investigatorRIDB-7754-2008-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.contributor.wosstandardWOS:Lopez-de-Ipina, K
dc.contributor.wosstandardWOS:Alonso-Hernandez, JB
dc.contributor.wosstandardWOS:Sole-Casals, J
dc.contributor.wosstandardWOS:Travieso-Gonzalez, CM
dc.contributor.wosstandardWOS:Ezeiza, A
dc.contributor.wosstandardWOS:Faundez-Zanuy, M
dc.contributor.wosstandardWOS:Calvo, PM
dc.contributor.wosstandardWOS:Beitia, B
dc.date.coverdateEnero 2015
dc.identifier.conferenceidevents120890
dc.identifier.ulpgces
dc.description.sjr1,024
dc.description.jcr2,392
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate19-06-2013-
crisitem.event.eventsenddate21-06-2013-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

23
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

20
actualizado el 17-nov-2024

Visitas

74
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.