Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43954
Título: | Biometric personal identification system using biomedical sensors | Autores/as: | Diaz Alonso, Alain D. Travieso, Carlos M. Alonso, Jesus B. Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Support vector machines Skin Electromyography Temperature measurement Mathematical model, et al. |
Fecha de publicación: | 2017 | Conferencia: | 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 | Resumen: | This paper proposes a biometric system to identify people using common biomedical sensors. A dataset is built by groups of signals acquired from 25 people, and is used in the system. The present proposal applies a combination of principal components analysis and support vector machines to identify people by a group of biometric signals: electrocardiogram, airflow, temperature, pulse oximetry, electromyogram and galvanic skin response. The testing results have achieved a 92% of correct identification rate. | URI: | http://hdl.handle.net/10553/43954 | ISBN: | 9781509032105 | DOI: | 10.1109/CCIntelS.2016.7878210 | Fuente: | 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 (7878210), p. 104-109 |
Colección: | Actas de congresos |
Citas SCOPUSTM
8
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 25-feb-2024
Visitas
147
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.