Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43948
Título: Automatic Classification of Normal and Abnormal PCG Recording Heart Sound Recording Using Fourier Transform
Autores/as: Yadav, Anjali
Dutta, Malay Kishore
Travieso González, Carlos Manuel 
Alonso, Jesus B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Heart , Feature extraction , Phonocardiography , Band-pass filters , Cepstrum , Classification algorithms , Fourier transforms, Heart Sound , PCG , Signal Processing , Feature extraction , SVM
Fecha de publicación: 2018
Publicación seriada: 2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings
Conferencia: 2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 
Resumen: Cardiovascular diseases are very common these days and there arises a need for regular diagnosis of humans. Phonocardiogram is an effective diagnostic tool for analysing the heart sound. It helps in providing better information regarding clinical condition of the heart. This paper proposes an algorithmic method for differentiating a normal heart sound from an abnormal one using the PCG sound data. Cepstrum analysis has been performed on both types of signals and features are extracted from the heart sound. The extracted features are trained and tested with the help of a support vector machine classifier. The proposed method has achieved an accuracy of 95% in correctly classifying a heart sound PCG signal as normal and abnormal.
URI: http://hdl.handle.net/10553/43948
ISBN: 9781538675069
DOI: 10.1109/IWOBI.2018.8464131
Fuente: 2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings (8464131)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.