Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43857
Título: Using data mining and fingerprinting extension with device orientation information for WLAN efficient indoor location estimation
Autores/as: Sánchez Rodríguez, David Cruz 
Quinteiro, José Ma 
Hernández-Morera, Pablo 
Martel-Jordán, Ernestina 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Decision trees , Data mining , Estimation , Fingerprint recognition , Mobile handsets , Accuracy , Computational modeling
Fecha de publicación: 2012
Publicación seriada: International Conference on Wireless and Mobile Computing, Networking and Communications
Conferencia: 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2012 
Resumen: Research based on indoor location systems has recently been developed due to growing interest in location-aware services to be implemented in light mobile devices. Most of this work is based on received signal strength (RSS) from access points. However, a major drawback from using RSS is its variability due to indoor multipath effect caused by reflection, diffraction and scattering of signal propagation. Therefore, different device orientations in a fixed location provide significant and different RSS values. In this paper, we propose to extend fingerprinting with device orientation information. Implementation of our location system is based on data mining techniques employing decision tree algorithms. Experimental results demonstrate that using RSS samples with the device orientation information improves the location estimation with high accuracy
URI: http://hdl.handle.net/10553/43857
ISBN: 9781467314305
ISSN: 2161-9646
DOI: 10.1109/WiMOB.2012.6379164
Fuente: International Conference on Wireless and Mobile Computing, Networking and Communications[ISSN 2161-9646] (6379164), p. 77-83
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

8
actualizado el 15-dic-2024

Visitas

113
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.