Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43509
Title: Effect of krill phospholipids versus soybean lecithin in microdiets for gilthead seabream (Sparus aurata) larvae on molecular markers of antioxidative metabolism and bone development
Authors: Saleh, R.
Betancor, M. B.
Roo Filgueira, Francisco Javier 
Benítez-Dorta, V.
Zamorano Serrano, María Jesús 
Bell, J. G.
Izquierdo López, María Soledad 
UNESCO Clasification: 251092 Acuicultura marina
Keywords: Bone development
Krill phospholipids
Soybean lecithin
Larval performance
Oxidative stress, et al
Issue Date: 2015
Publisher: 1353-5773
Project: Mecanismos Fisiologicos Implicados en la Actuación de Lagunos Nutrientes Relacionados Con la Oxidación Lipidica y Sus Repercursiones en El Desarrollo Larvario de Los Peces Marinos. 
Advanced Research Initiatives For Nutrition & Aquaculture 
Journal: Aquaculture Nutrition 
Abstract: The objective of the present study was to compare the effectiveness of dietary marine phospholipids (MPL) obtained from krill and soybean lecithin (SBL) on the rearing performance and development of seabream (Sparus aurata) larvae. Larvae were fed from 16 to 44 day posthatching (dph) five formulated microdiets with three different levels (50, 70 and 90 g kg–1) of phospholipids (PL) obtained either from an MPL or from a SBL source. Larvae‐fed MPL show a higher survival, stress resistance and growth than those‐fed SBL, regardless the dietary PL level. Overall, the increase in MPL up to 70 g kg–1 total PL in diet was enough to improve larval gilthead seabream performance, whereas even the highest SBL inclusion level (90 g kg–1 PL) was not able to provide a similar success in larval growth or survival. Inclusion of SBL markedly increased the peroxidation risk as denoted by the higher TBARs in larvae, as well as a higher expression of CAT, GPX and SOD genes. Moreover, SBL tends to produce larvae with a lower number of mineralized vertebrae and a lower expression of osteocalcin, osteopontin and BMP4 genes. Finally, increasing dietary MPL or SBL lead to a better assimilation of polyunsaturated fatty acids in the larvae, n‐3HUFA (especially 20:5n‐3) or n‐6 fatty acids (especially 18:2n‐6), respectively. In conclusion, MPL had a higher effectiveness in promoting survival, growth and skeletal mineralization of gilthead seabream larvae in comparison with SBL.
URI: http://hdl.handle.net/10553/43509
ISSN: 1353-5773
DOI: 10.1111/anu.12177
Source: Aquaculture Nutrition [ISSN 1353-5773], v. 21 (4), p. 474-488
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.