Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/43232
Title: | Comparative study of nanocrystalline titanium dioxide obtained through sol-gel and sol-gel-hydrothermal synthesis | Authors: | Seck, Elhadji Idrissa Doña Rodríguez, José Miguel Pulido Melián, Elisenda Fernández Rodríguez, Cristina González Díaz, Oscar Manuel Portillo-Carrizo, D. Pérez Peña, Jesús |
UNESCO Clasification: | 2301 química analítica | Keywords: | TiO2 Sol–gel Hydrothermal Photocatalysis Phenol |
Issue Date: | 2013 | Publisher: | 0021-9797 | Project: | "Producción de Fotocatalizadores Nanoestructurados Por Procesos de Bajo Coste y Alta Productividad Para Descontaminación de Aguas Residuales: Nanobac Nuevos Fotocatalizadores Basados en Tio2 Para Destoxificación de Efluentes Acuosos y Gaseosos: Sintesis, Modificación y Soporte. |
Journal: | Journal of Colloid and Interface Science | Abstract: | TiO2 particles were prepared by sol–gel method alone and by sol–gel method combined with hydrothermal treatment. The structural and photocatalytic properties of the two series of photocatalysts were compared. XRD studies revealed that rutilization was faster in the series of photocatalysts, which had been additionally subjected to a hydrothermal process (SG-HT). The hydrothermally treated photocatalysts also displayed a higher specific surface area than those which had only been synthesized using the sol–gel process (SG) and subjected to low calcination temperatures of up to 873 K, while this tendency was inverted at higher temperatures. In accordance with the above observation, the hydrothermally treated series of photocatalysts had a lower particle size than the SG series calcined immediately after the sol–gel process up to 873 K, with this relation being inverted for the highest two temperatures which were studied (973 K and 1023 K) and which saw the commencement of rutilization. Increases in average particle size were observed for both series, with a polyhedral morphology seen as calcination temperature rose. FTIR studies highlighted the presence of the band at 2351 cm−1 in the SG-HT photocatalysts, characteristic of surface-adsorbed CO2. This was not seen in the SG or P25 photocatalysts. In terms of photoreactivity, the best photocatalyst in the SG-HT series was that calcined at 923 K and in the SG series at 1023 K (SG-1023). Comparing these two photocatalysts and the commercial P25 photocatalyst, SG-1023 was found to be the most photoactive in both the photodegradation and the mineralization of phenol. | URI: | http://hdl.handle.net/10553/43232 | ISSN: | 0021-9797 | DOI: | 10.1016/j.jcis.2013.03.019 | Source: | Journal of Colloid and Interface Science [ISSN 0021-9797], v. 400, p. 31-40 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
25
checked on Sep 15, 2024
WEB OF SCIENCETM
Citations
23
checked on Sep 15, 2024
Page view(s)
109
checked on Aug 10, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.