Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43078
Título: Cepstrum feature selection for the classification of Sleep Apnea-Hypopnea Syndrome based on heart rate variability
Autores/as: Ravelo García, Antonio Gabriel 
Navarro Mesa, Juan Luis 
Hernadez-Perez, E.
Martín González, Sofía Isabel 
Quintana-Morales, P. 
Guerra-Moreno, I. 
Julia-Serda, G.
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: electrocardiography
medical signal processing
medical disorders
sleep
statistical analysis
Fecha de publicación: 2013
Publicación seriada: Computing in Cardiology 
Conferencia: 40th Annual Meeting on Computing in Cardiology (CinC) 
Resumen: Cepstrum Coefficients are analyzed in order to study its performance in Sleep Apnea Hypopnea Syndrome (SAHS) screening. A forward feature selection technique is applied in order to know for one thing, what cepstrum parameters can extract better information about the influence of breath sleep disorder on the heart rhythm, and on the other hand, trying to detect apneas based on the RR series obtained from the electrocardiogram (EKG). © 2013 CCAL.
URI: http://hdl.handle.net/10553/43078
ISBN: 9781479908844
ISSN: 2325-8861
Fuente: Computing in Cardiology[ISSN 2325-8861],v. 40 (6713538), p. 959-962
Colección:Actas de congresos
miniatura
Adobe PDF (598,74 kB)
Vista completa

Visitas

3
actualizado el 10-jul-2022

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.