Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43076
Título: An approach to the improvement of electrocardiogram-based sleep breathing pauses detection by means of permutation entropy of the heart rate variability
Autores/as: Ravelo-García, A. G. 
Casanova-Blancas, U.
Martín-González, S. 
Hernández-Pérez, E. 
Quintana Morales, P. 
Navarro-Mesa, J. L. 
Clasificación UNESCO: 3307 Tecnología electrónica
Fecha de publicación: 2014
Conferencia: 3rd IEEE International Work-Conference on Bioinspired Intelligence, IWOBI 2014 
Resumen: © 2014 IEEE.Permutation entropy obtained from heart rate variability (HRV) is analyzed in a statistical model integrating electrocardiogram derived respiratory (EDR) features and cepstrum coefficients in order to detect obstructive sleep apnea (OSA) events. 70 ECG recordings from Physionet database are divided into a learning set and a test set of equal size. Each set consists of 35 recordings, containing a single ECG signal. Each recording includes a set of reference annotations, one for each minute, which indicates the presence or absence of apnea during that minute. Statistical classification methods based on Logistic Regression (LR) is applied to the classification of sleep apnea epochs. EDR presents a sensitivity of 64.3% and specificity of 86.5% (auc=83.9). Cepstrum presents a sensitivity of 63.8% and specificity of 89.2% (auc=86). Contribution of the permutation entropy increases the performance of the LR model, playing an important role in the OSA quantification task. In particular, when all features are analyzed, classifier reaches a sensitivity of 70.2% and specificity of 91.8% (auc=89.8).
URI: http://hdl.handle.net/10553/43076
ISBN: 9781479961740
Fuente: 2014 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2014 - Proceedings, p. 82-85
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

4
actualizado el 15-dic-2024

Visitas

148
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.