Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42930
Título: Modelling road accident blackspots data with the discrete generalized Pareto distribution
Autores/as: Prieto, Faustino
Gómez Déniz, Emilio 
Sarabia, José María
Clasificación UNESCO: 1209 Estadística
Palabras clave: Distribución
Seguros
Fecha de publicación: 2014
Editor/a: 0001-4575
Publicación seriada: Accident analysis and prevention 
Resumen: This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ + 1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed.
URI: http://hdl.handle.net/10553/42930
ISSN: 0001-4575
DOI: 10.1016/j.aap.2014.05.005
Fuente: Accident Analysis and Prevention[ISSN 0001-4575],v. 71, p. 38-49
Colección:Artículos
Vista completa

Citas SCOPUSTM   

32
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

24
actualizado el 24-nov-2024

Visitas

61
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.