Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42884
Título: Detection of interdependences in attribute selection
Autores/as: Lorenzo, Javier 
Hernández, Mario 
Mendez, J 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Decision Tree Induction
Fecha de publicación: 1998
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 2nd European Symposium on Principles of Data Mining and Knowledge Discovery in Databases (PKDD 98) 
2nd European Symposium on Principles of Data Mining and Knowledge Discovery in Databases, PKDD 1998 
Resumen: A new measure for attribute selection, called GD, is proposed. The GD measure is based on Information Theory and allows to detect the interdependence between attributes. This measure is based on a quadratic form of the Mántaras distance and a matrix called Transinformation Matrix. In order to test the quality of the proposed measure, it is compared with other two feature selection methods, namely Mántaras distance and Relief algorithms. The comparison is done over 19 datasets along with three different induction algorithms.
URI: http://hdl.handle.net/10553/42884
ISBN: 978-3-540-65068-3
3540650687
ISSN: 0302-9743
DOI: 10.1007/BFb0094822
Fuente: Żytkow J.M., Quafafou M. (eds) Principles of Data Mining and Knowledge Discovery. PKDD 1998. Lecture Notes in Computer Science, vol 1510. Springer, Berlin, Heidelberg
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 25-feb-2024

Visitas

124
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.