Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42872
DC FieldValueLanguage
dc.contributor.authorMendez, Juanen_US
dc.contributor.authorFalcón Martel, Antonioen_US
dc.contributor.authorHernández, Marioen_US
dc.contributor.authorLorenzo, Javieren_US
dc.contributor.otherMendez, Juan-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.date.accessioned2018-11-21T11:28:56Z-
dc.date.available2018-11-21T11:28:56Z-
dc.date.issued2007en_US
dc.identifier.isbn978-3-540-74971-4en_US
dc.identifier.issn1615-3871en_US
dc.identifier.urihttp://hdl.handle.net/10553/42872-
dc.description.abstractThe paper shows the application of the multidimensional scaling to discover the intrinsic dimensionality of the substitution matrices. These matrices are used in Bioinformatics to compare amino acids in the alignment procedures. However, the methodology can be used in other applications to discover the intrinsic dimensionality of a wide class of symmetrical matrices. The discovery of the intrinsic dimensionality of substitutions matrices is a data processing problem with applications in chemical evolution. The problem is related with the number of relevant physical, chemical and structural characteristic involved in these matrices. Many studies have dealt with the identification of relevant characteristic sets for these matrices, but few have concerned with establishing an upper bound of their cardinality. The methodology of multidimensional scaling is used to map the substitution matrix information in a virtual low dimensional space. The relationship between the quality of this process and the dimensionality of the mapping provides clues about the number of characteristics which better represents the matrix. To avoid the local minima problem, a genetic algorithm is used to minimize the objective function of the multidimensional scaling procedure. The main conclusion is that the number of effective characteristics involved in substitution matrices is small.en_US
dc.languageengen_US
dc.relation.ispartofAdvances in Soft Computingen_US
dc.sourceCorchado E., Corchado J.M., Abraham A. (eds) Innovations in Hybrid Intelligent Systems. Advances in Soft Computing, vol 44. Springer, Berlin, Heidelbergen_US
dc.subject120304 Inteligencia artificialen_US
dc.titleDiscovering the intrinsic dimensionality of BLOSUM substitution matrices using evolutionary MDSen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2nd International Workshop on Hybrid Artificial Intelligence Systemsen_US
dc.identifier.doi10.1007/978-3-540-74972-1_48en_US
dc.identifier.scopus61349185218-
dc.identifier.isi000253272200047-
dcterms.isPartOfInnovations In Hybrid Intelligent Systems-
dcterms.sourceInnovations In Hybrid Intelligent Systems[ISSN 1615-3871],v. 44, p. 369-+-
dc.contributor.authorscopusid26039317000-
dc.contributor.authorscopusid57213300180-
dc.contributor.authorscopusid56264673800-
dc.contributor.authorscopusid7401972145-
dc.contributor.authorscopusid57212239402-
dc.contributor.authorscopusid15042453800-
dc.description.lastpage376en_US
dc.description.firstpage369en_US
dc.relation.volume44en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000253272200047-
dc.contributor.daisngid2527455-
dc.contributor.daisngid726480-
dc.contributor.daisngid6761927-
dc.contributor.daisngid3297402-
dc.contributor.daisngid1190480-
dc.contributor.daisngid34923785-
dc.identifier.investigatorRIDL-9297-2014-
dc.identifier.investigatorRIDL-1972-2014-
dc.identifier.investigatorRIDL-1972-2014-
dc.identifier.externalWOS:000253272200047-
dc.identifier.eisbn978-3-540-74972-1-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendez, J-
dc.contributor.wosstandardWOS:Falcon, A-
dc.contributor.wosstandardWOS:Hernandez, M-
dc.contributor.wosstandardWOS:Lorenzo, J-
dc.date.coverdateDiciembre 2007en_US
dc.identifier.ulpgces
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2628-7639-
crisitem.author.orcid0000-0002-7467-947X-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Rodríguez,Juan Ángel-
crisitem.author.fullNameFalcón Martel,Antonio-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
crisitem.author.fullNameLorenzo Navarro, José Javier-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

94
checked on Jul 20, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.