Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42858
Campo DC Valoridioma
dc.contributor.authorMendez, Juanen_US
dc.contributor.authorLorenzo, Javieren_US
dc.date.accessioned2018-11-21T11:25:31Z-
dc.date.available2018-11-21T11:25:31Z-
dc.date.issued2012en_US
dc.identifier.isbn978-989-8425-98-0en_US
dc.identifier.urihttp://hdl.handle.net/10553/42858-
dc.description.abstractSome algorithms in Pattern Recognition and Machine Learning as neighborhood-based classification and dataset condensation can be improved with the use of Voronoi tessellation. The paper shows the weakness of some existing algorithms of tessellation to deal with high dimensional datasets. The use of linear programming can improve the tessellation procedures by focusing in Voronoi adjacency. It will be shown that the adjacency test based on linear programming is a version of the polytope search. However, the polytope search procedure provides more information than a simple Boolean test. The paper proposes a strategy to use the additional information contained in the basis of the linear programming algorithm to obtain other tests. The theoretical results are applied to tessellate several random datasets, and also for much-used datasets in Machine Learning repositories.en_US
dc.languageengen_US
dc.sourceICPRAM 2012 - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods,v. 2, p. 357-364en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherPattern Recognitionen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherNearest Neighborsen_US
dc.subject.otherVoronoi adjacencyen_US
dc.subject.otherLinear programmingen_US
dc.titleEfficient computation of voronoi neighbors based on polytope search in pattern recognitionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference1st International Conference on Pattern Recognition Applications and Methods, ICPRAM 2012
dc.identifier.scopus84862197333-
dc.contributor.authorscopusid55377382200-
dc.contributor.authorscopusid15042453800-
dc.description.lastpage364-
dc.description.firstpage357-
dc.relation.volume2-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateJunio 2012
dc.identifier.conferenceidevents121440
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate06-02-2012-
crisitem.event.eventsenddate08-02-2012-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2628-7639-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Rodríguez,Juan Ángel-
crisitem.author.fullNameLorenzo Navarro, José Javier-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 15-dic-2024

Visitas

45
actualizado el 30-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.