Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42851
Título: Pivotal quantities based on sequential data: A bootstrap approach
Autores/as: Saavedra, Pedro 
Santana, Angelo 
Del Pino Quintana, María 
Clasificación UNESCO: 120905 Análisis y diseño de experimentos
120906 Métodos de distribución libre y no paramétrica
120913 Técnicas de inferencia estadística
120903 Análisis de datos
240401 Bioestadística
Palabras clave: Bootstrap
Sequential designs
Wang and Tsiatis tests
Fecha de publicación: 2006
Publicación seriada: Communications in Statistics Part B: Simulation and Computation 
Resumen: A bootstrap algorithm is provided for obtaining a confidence interval for the mean of a probability distribution when sequential data are considered. For this kind of data the empirical distribution can be biased but its bias is bounded by the coefficient of variation of the stopping rule associated with the sequential procedure. When using this distribution for resampling the validity of the bootstrap approach is established by means of a series expansion of the corresponding pivotal quantity. A simulation study is carried out using Wang and Tsiatis type tests and considering the normal and exponential distributions to generate the data. This study confirms that for moderate coefficients of variation of the stopping rule, the bootstrap method allows adequate confidence intervals for the parameters to be obtained, whichever is the distribution of data.
URI: http://hdl.handle.net/10553/42851
ISSN: 0361-0918
DOI: 10.1080/03610910600880526
Fuente: Communications In Statistics-Simulation And Computation[ISSN 0361-0918],v. 35 (4), p. 1005-1018
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.