Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42752
Title: Existence and uniqueness of positive solutions for a singular fractional three-point boundary value problem
Authors: Cabrera, I. J. 
Harjani, J. 
Sadarangani, K. B. 
UNESCO Clasification: 120215 Ecuaciones integrales
Issue Date: 2012
Project: Teoremas Del Punto Fijo y Aplicaciones. Desigualdades de Integrales Fuzzy (Project ULPGC 2010–006)
Journal: Abstract and Applied Analysis 
Abstract: We investigate the existence and uniqueness of positive solutions for the following singular fractional three-point boundary value problem Dα0+ u (t) +f (t,u (t)) = 0,0 < t < 1, u (0) = u’ (0) =u’’ (0) = 0,u’’ (1) = βu’’(η), where 3 <α ≤ 4, Dα0+ is the standard Riemann-Liouville derivative and f : (0,1] × [0,∞) → [0,∞) with limt→0+ f (t,·) = ∞ (i.e., f is singular at t=0). Our analysis relies on a fixed point theorem in partially ordered metric spaces.
URI: http://hdl.handle.net/10553/42752
ISSN: 1085-3375
DOI: 10.1155/2012/803417
Source: Abstract and Applied Analysis[ISSN 1085-3375],v. 2012 (803417)
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
existence_uniqueness_positive_solutions.pdf1,91 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

7
checked on Dec 7, 2019

WEB OF SCIENCETM
Citations

4
checked on Dec 7, 2019

Page view(s)

13
checked on Dec 7, 2019

Download(s)

7
checked on Dec 7, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.