Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42516
Title: The 8-tetrahedra longest-edge partition of right-type tetrahedra
Authors: Plaza, A. 
Padrón, M. A. 
Suárez, J. P. 
Falcón, S. 
UNESCO Clasification: 12 Matemáticas
120601 Construcción de algoritmos
Keywords: 8-tetrahedra longest-edge partition
Right-type tetrahedron
Maximum angle condition
Non-degeneracy
Similarity
Eight-tetrahedra longest-edge partition
Kuhn triangulation
Issue Date: 2004
Journal: Finite Elements in Analysis and Design 
Abstract: A tetrahedron t is said to be a right-type tetrahedron, if its four faces are right triangles. For any right-type initial tetrahedron t, the iterative 8-tetrahedra longest-edge partition of t yields into a sequence of right-type tetrahedra. At most only three dissimilar tetrahedra are generated and hence the non-degeneracy of the meshes is simply proved. These meshes are of acute type and then satisfy trivially the maximum angle condition. All these properties are highly favorable in finite element analysis. Furthermore, since a right prism can be subdivided into six right-type tetrahedra, the combination of hexahedral meshes and right tetrahedral meshes is straightforward.
URI: http://hdl.handle.net/10553/42516
ISSN: 0168-874X
DOI: 10.1016/j.finel.2004.04.005
Source: Finite Elements in Analysis and Design [ISSN 0168-874X], v. 41 (3), p. 253-265
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
2004_FEAD-Dic-04.pdf274,13 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

5
checked on Jan 25, 2020

WEB OF SCIENCETM
Citations

5
checked on Jan 25, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.