Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42516
Título: The 8-tetrahedra longest-edge partition of right-type tetrahedra
Autores/as: Plaza, A. 
Padrón, M. A. 
Suárez, J. P. 
Falcón, S. 
Clasificación UNESCO: 12 Matemáticas
120601 Construcción de algoritmos
Palabras clave: 8-tetrahedra longest-edge partition
Right-type tetrahedron
Maximum angle condition
Non-degeneracy
Similarity, et al.
Fecha de publicación: 2004
Publicación seriada: Finite Elements in Analysis and Design 
Resumen: A tetrahedron t is said to be a right-type tetrahedron, if its four faces are right triangles. For any right-type initial tetrahedron t, the iterative 8-tetrahedra longest-edge partition of t yields into a sequence of right-type tetrahedra. At most only three dissimilar tetrahedra are generated and hence the non-degeneracy of the meshes is simply proved. These meshes are of acute type and then satisfy trivially the maximum angle condition. All these properties are highly favorable in finite element analysis. Furthermore, since a right prism can be subdivided into six right-type tetrahedra, the combination of hexahedral meshes and right tetrahedral meshes is straightforward.
URI: http://hdl.handle.net/10553/42516
ISSN: 0168-874X
DOI: 10.1016/j.finel.2004.04.005
Fuente: Finite Elements in Analysis and Design [ISSN 0168-874X], v. 41 (3), p. 253-265
URL: https://api.elsevier.com/content/abstract/scopus_id/12444277295
Colección:Artículos
miniatura
Adobe PDF (274,13 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.