Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42516
Título: | The 8-tetrahedra longest-edge partition of right-type tetrahedra | Autores/as: | Plaza, A. Padrón, M. A. Suárez, J. P. Falcón, S. |
Clasificación UNESCO: | 12 Matemáticas 120601 Construcción de algoritmos |
Palabras clave: | 8-tetrahedra longest-edge partition Right-type tetrahedron Maximum angle condition Non-degeneracy Similarity, et al. |
Fecha de publicación: | 2004 | Publicación seriada: | Finite Elements in Analysis and Design | Resumen: | A tetrahedron t is said to be a right-type tetrahedron, if its four faces are right triangles. For any right-type initial tetrahedron t, the iterative 8-tetrahedra longest-edge partition of t yields into a sequence of right-type tetrahedra. At most only three dissimilar tetrahedra are generated and hence the non-degeneracy of the meshes is simply proved. These meshes are of acute type and then satisfy trivially the maximum angle condition. All these properties are highly favorable in finite element analysis. Furthermore, since a right prism can be subdivided into six right-type tetrahedra, the combination of hexahedral meshes and right tetrahedral meshes is straightforward. | URI: | http://hdl.handle.net/10553/42516 | ISSN: | 0168-874X | DOI: | 10.1016/j.finel.2004.04.005 | Fuente: | Finite Elements in Analysis and Design [ISSN 0168-874X], v. 41 (3), p. 253-265 | URL: | https://api.elsevier.com/content/abstract/scopus_id/12444277295 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.