Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42502
Título: On using periocular biometric for gender classification in the wild
Autores/as: Castrillón Santana, Modesto Fernando 
Lorenzo Navarro, José Javier 
De Ramón Balmaseda, Enrique José 
Clasificación UNESCO: 120304 Inteligencia artificial
2405 Biometría
Palabras clave: Facial analysis
Gender recognition
Periocular
Soft biometrics
Fecha de publicación: 2016
Publicación seriada: Pattern Recognition Letters 
Resumen: The periocular area is a reliable cue for automatic gender classification (GC).Each local descriptor and grid configuration report different GC accuracy.The score level fusion of local descriptors increases GC performance.Tests carried out in a challenging large and unrestricted dataset.The fusion of periocular and facial GC reduces the classification error in roughly 20%. Display Omitted Gender information may serve to automatically modulate interaction to the user needs, among other applications. Within the Computer Vision community, gender classification (GC) has mainly been accomplished with the facial pattern. Periocular biometrics has recently attracted researchers attention with successful results in the context of identity recognition. But, there is a lack of experimental evaluation of the periocular pattern for GC in the wild. The aim of this paper is to study the performance of this specific facial area in the currently most challenging large dataset for the problem. As expected, the achieved results are slightly worse, roughly 8 percentage points lower, than those obtained by state-of-the-art facial GC, but they suggest the validity of the periocular area particularly in difficult scenarios where the whole face is not visible, or has been altered. A final experiment combines in a multi-scale approach features extracted from the periocular, face and head and shoulders areas, fusing them in a two stage ensemble of classifiers. The accuracy reported beats any previous results on the difficult The Images of Groups dataset, reaching 92.46%, with a GC error reduction of almost 20% compared to the best face based GC results in the literature.
URI: http://hdl.handle.net/10553/42502
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2015.09.014
Fuente: Pattern Recognition Letters [ISSN 0167-8655], v. 82, p. 181-189
Colección:Artículos
Vista completa

Citas SCOPUSTM   

55
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

45
actualizado el 15-dic-2024

Visitas

99
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.