Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42471
DC FieldValueLanguage
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorBlumenstein, Michaelen_US
dc.date.accessioned2018-11-15T13:02:09Z-
dc.date.available2018-11-15T13:02:09Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-5090-1870-3en_US
dc.identifier.issn2376-4201en_US
dc.identifier.otherWoS-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/42471-
dc.description.abstractThis article reports and summarizes the results of a competition on sclera segmentation and recognition benchmarking, called Sclera Segmentation and Recognition Benchmarking Competition 2016 (SSRBC 2016). It was organized in the context of the 9th IAPR International Conference on Biometrics (ICB 2016). The goal of this competition was to record the recent developments in sclera segmentation and recognition, and also to gain the attention of researchers on this subject of biometrics. In this regard, we have used a multi-angle sclera dataset (MASD version 1). It is comprised of 2624 images taken from both the eyes of 82 identities. Therefore, it consists of images of 164 (82∗2) different eyes. We have prepared a manual segmentation mask of these images to create the baseline for both tasks. We have, furthermore, adopted precision and recall based statistical measures to evaluate the effectiveness of the segmentation and the ranks of the competing algorithms. The recognition accuracy measure has been employed to measure the recognition task. To summarize, twelve participants registered for the competition, and among them, three participants submitted their algorithms/ systems for the segmentation task and two their recognition algorithm. The results produced by these algorithms reflect developments in the literature of sclera segmentation and recognition, employing cutting edge segmentation techniques. Along with the algorithms of three competing teams and their results, the MASD version 1 dataset will also be freely available for research purposes from the organizer's website. The competition also demonstrates the recent interests of researchers from academia as well as industry on this subject of biometrics.en_US
dc.languageengen_US
dc.relation.ispartofInternational Conference on Biometricsen_US
dc.source2016 International Conference on Biometrics (ICB), Halmstad, 2016, p. 1-6, (Agosto 2016)en_US
dc.subject120325 Diseño de sistemas sensoresen_US
dc.subject2405 Biometríaen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherClustering algorithmsen_US
dc.subject.otherIris recognitionen_US
dc.subject.otherManualsen_US
dc.subject.otherFeature extractionen_US
dc.titleSSRBC 2016: Sclera Segmentation and Recognition Benchmarking Competitionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference9th International Conference on Biometrics (ICB)en_US
dc.identifier.doi10.1109/ICB.2016.7550069en_US
dc.identifier.scopus84988432386-
dc.identifier.isi000390841200024-
dc.contributor.authorscopusid57214490551-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid56243577200-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid3164655-
dc.contributor.daisngid25227-
dc.contributor.daisngid233119-
dc.contributor.daisngid110880-
dc.description.numberofpages6en_US
dc.identifier.eisbn978-1-5090-1869-7-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Das, A-
dc.contributor.wosstandardWOS:Pal, U-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.contributor.wosstandardWOS:Blumenstein, M-
dc.date.coverdateAgosto 2016en_US
dc.identifier.conferenceidevents121012-
dc.identifier.ulpgcen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate13-06-2016-
crisitem.event.eventsenddate16-06-2016-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

37
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

12
checked on Feb 25, 2024

Page view(s)

78
checked on May 25, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.