Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/42471
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Das, Abhijit | en_US |
dc.contributor.author | Pal, Umapada | en_US |
dc.contributor.author | Ferrer, Miguel A. | en_US |
dc.contributor.author | Blumenstein, Michael | en_US |
dc.date.accessioned | 2018-11-15T13:02:09Z | - |
dc.date.available | 2018-11-15T13:02:09Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.isbn | 978-1-5090-1870-3 | en_US |
dc.identifier.issn | 2376-4201 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/42471 | - |
dc.description.abstract | This article reports and summarizes the results of a competition on sclera segmentation and recognition benchmarking, called Sclera Segmentation and Recognition Benchmarking Competition 2016 (SSRBC 2016). It was organized in the context of the 9th IAPR International Conference on Biometrics (ICB 2016). The goal of this competition was to record the recent developments in sclera segmentation and recognition, and also to gain the attention of researchers on this subject of biometrics. In this regard, we have used a multi-angle sclera dataset (MASD version 1). It is comprised of 2624 images taken from both the eyes of 82 identities. Therefore, it consists of images of 164 (82∗2) different eyes. We have prepared a manual segmentation mask of these images to create the baseline for both tasks. We have, furthermore, adopted precision and recall based statistical measures to evaluate the effectiveness of the segmentation and the ranks of the competing algorithms. The recognition accuracy measure has been employed to measure the recognition task. To summarize, twelve participants registered for the competition, and among them, three participants submitted their algorithms/ systems for the segmentation task and two their recognition algorithm. The results produced by these algorithms reflect developments in the literature of sclera segmentation and recognition, employing cutting edge segmentation techniques. Along with the algorithms of three competing teams and their results, the MASD version 1 dataset will also be freely available for research purposes from the organizer's website. The competition also demonstrates the recent interests of researchers from academia as well as industry on this subject of biometrics. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | International Conference on Biometrics | en_US |
dc.source | 2016 International Conference on Biometrics (ICB), Halmstad, 2016, p. 1-6, (Agosto 2016) | en_US |
dc.subject | 120325 Diseño de sistemas sensores | en_US |
dc.subject | 2405 Biometría | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Image segmentation | en_US |
dc.subject.other | Clustering algorithms | en_US |
dc.subject.other | Iris recognition | en_US |
dc.subject.other | Manuals | en_US |
dc.subject.other | Feature extraction | en_US |
dc.title | SSRBC 2016: Sclera Segmentation and Recognition Benchmarking Competition | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 9th International Conference on Biometrics (ICB) | en_US |
dc.identifier.doi | 10.1109/ICB.2016.7550069 | en_US |
dc.identifier.scopus | 84988432386 | - |
dc.identifier.isi | 000390841200024 | - |
dc.contributor.authorscopusid | 57214490551 | - |
dc.contributor.authorscopusid | 57200742116 | - |
dc.contributor.authorscopusid | 55636321172 | - |
dc.contributor.authorscopusid | 56243577200 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 3164655 | - |
dc.contributor.daisngid | 25227 | - |
dc.contributor.daisngid | 233119 | - |
dc.contributor.daisngid | 110880 | - |
dc.description.numberofpages | 6 | en_US |
dc.identifier.eisbn | 978-1-5090-1869-7 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Das, A | - |
dc.contributor.wosstandard | WOS:Pal, U | - |
dc.contributor.wosstandard | WOS:Ferrer, MA | - |
dc.contributor.wosstandard | WOS:Blumenstein, M | - |
dc.date.coverdate | Agosto 2016 | en_US |
dc.identifier.conferenceid | events121012 | - |
dc.identifier.ulpgc | Sí | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 13-06-2016 | - |
crisitem.event.eventsenddate | 16-06-2016 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
37
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
12
checked on Feb 25, 2024
Page view(s)
78
checked on May 25, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.