Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42463
DC FieldValueLanguage
dc.contributor.authorLikodimos, V.en_US
dc.contributor.authorChrysi, A.en_US
dc.contributor.authorCalamiotou, M.en_US
dc.contributor.authorFernández Rodríguez, Cristinaen_US
dc.contributor.authorDoña Rodríguez, José Miguelen_US
dc.contributor.authorDionysiou, D.D.en_US
dc.contributor.authorFalaras, P.en_US
dc.date.accessioned2018-11-15T10:04:46Z-
dc.date.available2018-11-15T10:04:46Z-
dc.date.issued2016en_US
dc.identifier.issn0926-3373en_US
dc.identifier.urihttp://hdl.handle.net/10553/42463-
dc.description.abstractThe structural-microstructural characteristics and interfacial charge transfer are key issues to the development of efficient mixed phase TiO2 photocatalysts. In this work, the interplay of lattice deformation and microstrains as well as the identification of charge trapping sites and electron transfer were investigated for a series of nanostructured titania photocatalysts by X-ray powder diffraction analysis, Raman and electron paramagnetic resonance (EPR) spectroscopy. These mixed phase nanomaterials were selected as model sol-gel TiO2 systems based on their exceptional photocatalytic performance over a wide range of hazardous water pollutants (including degradation/mineralization of phenol, 2,4-dichlorophenoxyacetic acid and imazalil) under UV light. Lattice contraction with respect to the bulk anatase together with anisotropic microstrains was identified for the smallest (11 nm) anatase nanoparticles. Both effects gradually relaxed with the increase of calcination temperature and the concomitant particle growth, with microstrains scaling linearly with the relative change of the c-axis lattice constant and the broadening of the main anatase Raman mode. The growth of anatase nanoparticles at 1023 K with minimal lattice deformation and microstrains resulted in the optimal photocatalytic efficiency, outperforming the benchmark Aeroxide® P25 catalyst. This mixed phase catalyst comprised also larger, though more strained, rutile nanocrystals than P25, and presented an additional deeper electron trapping lattice site according to light-induced EPR measurements. More importantly, electron transfer from rutile to anatase lattice traps was identified by EPR under visible light in the mixed phase photocatalyst. The improved crystal quality of the anatase nanocrystals combined with the enhanced charge separation in anatase/rutile interfaces is concluded crucial to the design of competent solar photocatalytic nanomaterials.en_US
dc.languageengen_US
dc.publisher0926-3373-
dc.relationWater Detoxification Using Innovative vi-Nanocatalystsen_US
dc.relation.ispartofApplied Catalysis B: Environmentalen_US
dc.sourceApplied Catalysis B: Environmental [ISSN 0926-3373], v. 192, p. 242-252en_US
dc.subject2307 Química físicaen_US
dc.subject221001 Catálisisen_US
dc.subject.otherCharge transferen_US
dc.subject.otherElectron paramagnetic resonanceen_US
dc.subject.otherLattice deformationen_US
dc.subject.otherMicrostrain-crystallinityen_US
dc.subject.otherMixed phase TiO2 photocatalystsen_US
dc.subject.otherRietveld refinementen_US
dc.titleMicrostructure and charge trapping assessment in highly reactive mixed phase TiO2 photocatalystsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apcatb.2016.03.068en_US
dc.identifier.scopus2-s2.0-84962468656-
dc.contributor.authorscopusid7004236142-
dc.contributor.authorscopusid57188703444-
dc.contributor.authorscopusid6603603610-
dc.contributor.authorscopusid8381553300-
dc.contributor.authorscopusid6701567121-
dc.contributor.authorscopusid7003637412-
dc.contributor.authorscopusid35597060900-
dc.description.lastpage252-
dc.description.firstpage242-
dc.relation.volume192-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.sjr2,583
dc.description.jcr9,446
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorDoña Rodríguez, José Miguel-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Didácticas Específicas-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0001-6255-893X-
crisitem.author.orcid0000-0003-3604-1544-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameFernández Rodríguez, Cristina-
crisitem.author.fullNameDoña Rodríguez, José Miguel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

83
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

82
checked on Nov 17, 2024

Page view(s)

138
checked on Nov 1, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.