Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42446
DC FieldValueLanguage
dc.contributor.authorAlemán-Soler, N. M.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorGuerra-Segura, E.en_US
dc.contributor.authorAlonso, Jesus B.en_US
dc.contributor.authorDutta, M. K.en_US
dc.contributor.authorSingh, A.en_US
dc.date.accessioned2018-11-14T09:49:13Z-
dc.date.available2018-11-14T09:49:13Z-
dc.date.issued2016en_US
dc.identifier.isbn9781467391979
dc.identifier.urihttp://hdl.handle.net/10553/42446-
dc.description.abstractThis study presents an approach to use different biomedical signals in order to do biometric identification. The biomedical signals are captured using Arduino and Libelium platforms, what offers a low cost solution. The biomedical signals used are Electromyogram, Electrocardiogram and the Galvanic Skin Response. These signals are parametrized using well-known measures and Neural Networks are used as classifier in order to develop the user identification. The result of a success rate of 85.55% what is understood as a promising way to identify people by their biomedical signals.en_US
dc.languageengen_US
dc.relation.ispartof3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016
dc.source3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 (7566783), p. 681-686en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherArduinoen_US
dc.subject.otherBiomedical signalsen_US
dc.subject.otherBiometric identificationen_US
dc.subject.othere-Healthen_US
dc.subject.otherNeuroal Networken_US
dc.subject.otherSignal processingen_US
dc.titleBiometric approach based on physiological human signalsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016
dc.identifier.doi10.1109/SPIN.2016.7566783
dc.identifier.scopus84991728588
dc.contributor.authorscopusid57191583257
dc.contributor.authorscopusid6602376272
dc.contributor.authorscopusid57204219746
dc.contributor.authorscopusid24774957200
dc.contributor.authorscopusid35291803600
dc.contributor.authorscopusid55885045200
dc.description.lastpage686-
dc.description.firstpage681-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateSeptiembre 2016
dc.identifier.conferenceidevents121006
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate11-02-2016-
crisitem.event.eventsenddate12-02-2016-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

10
checked on Mar 30, 2025

Page view(s)

70
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.