Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42440
Título: | Online handwriting verification with safe password and increasing number of features | Autores/as: | Kutzner, Tobias Dietze, Mario Bönninger, Ingrid Travieso-González, Carlos M. Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Data mining Handwriting Safe password Verification |
Fecha de publicación: | 2016 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 | Resumen: | In this Article we present a solution to verify user with safe handwritten password. To achieve the best possible results we use 39 parameters beside some statistical parameters we use primarily time, speed and relation parameter. For the tests a database with 32 users was provided. Each user wrote safe password in one session 12 times. For the FAR (false acceptance rate) test we work with 3 forgeries per user. The best result of 100% success rate for a correct classification, we reached with the Bayes Net classifier. The best result of 3.13% false accepted rate is reached with Bayes Net classifier too. | URI: | http://hdl.handle.net/10553/42440 | ISBN: | 978-1-4673-9197-9 | DOI: | 10.1109/SPIN.2016.7566777 | Fuente: | 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 (7566777), p. 650-655 |
Colección: | Actas de congresos |
Citas SCOPUSTM
5
actualizado el 22-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
57
actualizado el 09-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.