Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42385
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Alonso-Hernández, Jesús B. | - |
dc.contributor.author | Barragan-Pulido, Maria L. | - |
dc.contributor.author | Travieso-González, Carlos M. | - |
dc.contributor.author | Ferrer Ballester, Miguel Ángel | - |
dc.contributor.author | Plata-Perez, Raquel | - |
dc.contributor.author | Dutta, Malay Kishore | - |
dc.contributor.author | Singh, Anushikha | - |
dc.date.accessioned | 2018-11-06T12:57:12Z | - |
dc.date.available | 2018-11-06T12:57:12Z | - |
dc.date.issued | 2018 | - |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/42385 | - |
dc.description.abstract | The objective of this report is to design a system to distinguish healthy and pathological ECG signals through the study of measurements based on Chaos Theory and the use of Artificial Neural Networks. A new database is created from Arrhythmia Database. Afterward, the study and feature extraction are carried out, specifically by using: Shannon entropy, Maximum Exponent of Lyapunov, Correlation Dimension, Correlation entropy, Lempel-Ziv Complexity and Hurst Exponent parameters. Regarding the classifier, a system based on Artificial Neural Networks is chosen and it is defined two classifications: between-different classes (diseases) and normal heartbeat and healthy-pathologic kind. Different studies are conducted and they are performed some parameter experimentations such as the optimum frame size of the database registers or the number of neurons. The utility of the use of these nonlinear parameters and the performance of the detection system are also assessed. The optimum frame size is estimated at 20s. The Hurst Exponent, Maximum Exponent of Lyapunov (Rosenstein) and Lempel-Ziv Complexity are the parameters reporting the better success rates. Regarding the number of neurons, from 10 onwards, a significative difference between percentages of success obtained does not exist. Into account in the overall assessment, the system offers 95% accuracy for the healthy-pathologic classification. This automated system, able to detect cardiac pathologies, helps to resolve subjective problems in heart disease diagnosing and also to facilitate doctor's work. | - |
dc.language | eng | - |
dc.relation.ispartof | 2018 5Th International Conference On Signal Processing And Integrated Networks (Spin) | - |
dc.source | 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, p. 372-379. | - |
dc.subject | 33 Ciencias tecnológicas | - |
dc.subject.other | Electrocardiogram signals | - |
dc.subject.other | Cardiac pathologies | - |
dc.subject.other | Chaos Theory | - |
dc.subject.other | Nonlinear parameters | - |
dc.subject.other | Classification | - |
dc.subject.other | Artificial Neural Networks | - |
dc.title | Nonlinear characterization of ECG signals for automatic arrhythmia detection | - |
dc.type | info:eu-repo/semantics/conferenceObject | - |
dc.type | ConferenceObject | - |
dc.relation.conference | 5th International Conference on Signal Processing and Integrated Networks (SPIN) | - |
dc.identifier.doi | 10.1109/SPIN.2018.8474274 | - |
dc.identifier.isi | 000446953700070 | - |
dc.description.lastpage | 379 | - |
dc.description.firstpage | 372 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Actas de congresos | - |
dc.contributor.daisngid | 29084685 | - |
dc.contributor.daisngid | 28053881 | - |
dc.contributor.daisngid | 265761 | - |
dc.contributor.daisngid | 4492603 | - |
dc.contributor.daisngid | 28109854 | - |
dc.contributor.daisngid | 35026383 | - |
dc.contributor.daisngid | 802071 | - |
dc.description.numberofpages | 8 | - |
dc.identifier.eisbn | 978-1-5386-3045-7 | - |
dc.utils.revision | No | - |
dc.contributor.wosstandard | WOS:Alonso-Hernandez, JB | - |
dc.contributor.wosstandard | WOS:Barragan-Pulido, ML | - |
dc.contributor.wosstandard | WOS:Travieso-Gonzalez, CM | - |
dc.contributor.wosstandard | WOS:Ferrer-Ballester, MA | - |
dc.contributor.wosstandard | WOS:Plata-Perez, R | - |
dc.contributor.wosstandard | WOS:Dutta, MK | - |
dc.contributor.wosstandard | WOS:Singh, A | - |
dc.date.coverdate | 2018 | - |
dc.identifier.conferenceid | events121116 | - |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 22-02-2018 | - |
crisitem.event.eventsenddate | 23-02-2018 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-7866-585X | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Alonso Hernández, Jesús Bernardino | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.