Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42255
Título: | Accelerating the K-Nearest Neighbors filtering algorithm to optimize the real-time classification of human brain tumor in hyperspectral images | Autores/as: | Florimbi, Giordana Fabelo, Himar Torti, Emanuele Lazcano, Raquel Madronal, Daniel Ortega, Samuel Salvador, Ruben Leporati, Francesco Danese, Giovanni Báez Quevedo, Abelardo Callicó, Gustavo M. Juárez, Eduardo Sanz, César Sarmiento, Roberto |
Clasificación UNESCO: | 330790 Microelectrónica | Palabras clave: | K-nearest neighbors filtering Hyperspectral imaging instrumentation Brain cancer detection Image processing Graphics processing units |
Fecha de publicación: | 2018 | Editor/a: | 1424-8220 | Publicación seriada: | Sensors | Resumen: | The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18x when compared to a sequential implementation. | URI: | http://hdl.handle.net/10553/42255 | ISSN: | 1424-8220 | DOI: | 10.3390/s18072314 | Fuente: | Sensors (Switzerland)[ISSN 1424-8220],v. 18 (2314) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.