Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42255
Título: Accelerating the K-Nearest Neighbors filtering algorithm to optimize the real-time classification of human brain tumor in hyperspectral images
Autores/as: Florimbi, Giordana
Fabelo, Himar 
Torti, Emanuele
Lazcano, Raquel
Madronal, Daniel
Ortega, Samuel 
Salvador, Ruben
Leporati, Francesco
Danese, Giovanni
Báez Quevedo, Abelardo 
Callicó, Gustavo M. 
Juárez, Eduardo
Sanz, César
Sarmiento, Roberto 
Clasificación UNESCO: 330790 Microelectrónica
Palabras clave: K-nearest neighbors filtering
Hyperspectral imaging instrumentation
Brain cancer detection
Image processing
Graphics processing units
Fecha de publicación: 2018
Editor/a: 1424-8220
Publicación seriada: Sensors 
Resumen: The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18x when compared to a sequential implementation.
URI: http://hdl.handle.net/10553/42255
ISSN: 1424-8220
DOI: 10.3390/s18072314
Fuente: Sensors (Switzerland)[ISSN 1424-8220],v. 18 (2314)
Colección:Artículos
miniatura
Adobe PDF (32,61 MB)
Vista completa

Citas SCOPUSTM   

33
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

27
actualizado el 15-dic-2024

Visitas

83
actualizado el 17-ago-2024

Descargas

113
actualizado el 17-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.