Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42207
DC FieldValueLanguage
dc.contributor.authorMendonça, Fabioen_US
dc.contributor.authorFred, Anaen_US
dc.contributor.authorShanawaz Mostafa, Sheikhen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2018-10-22T12:31:41Z-
dc.date.available2018-10-22T12:31:41Z-
dc.date.issued2018en_US
dc.identifier.isbn978-989-758-276-9en_US
dc.identifier.otherWoS-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/42207-
dc.description.abstractThe aim of this study is to develop an automatic detector of the cyclic alternating pattern by first detecting the activation phases (A phases) of this pattern, analysing the electroencephalogram during sleep, and then applying a finite state machine to implement the final classification. A public database was used to test the algorithms and a total of eleven features were analysed. Sequential feature selection was employed to select the most relevant features and a post processing procedure was used for further improvement of the classification. The classification of the A phases was produced using linear discriminant analysis and the average accuracy, sensitivity and specificity was, respectively, 75%, 78% and 74%. The cyclic alternating pattern detection accuracy was 75%. When comparing with the state of the art, the proposed method achieved the highest sensitivity but a lower accuracy since the fallowed approach was to keep the REM periods, contrary to the method that is used in the majority of the state of the art publications which leads to an increase in the overall performance. However, the approach of this work is more suitable for automatic system implementation since no alteration of the EEG data is needed.en_US
dc.languageengen_US
dc.sourceProceedings of the 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2018), p. 394-400, (Enero 2018)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherA Phaseen_US
dc.subject.otherCyclic Alternating Patternen_US
dc.subject.otherCAPen_US
dc.subject.otherLDAen_US
dc.titleAutomatic detection of a phases for CAP classificationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference7th International Conference on Pattern Recognition Applications and Methods (ICPRAM)en_US
dc.identifier.doi10.5220/0006595103940400en_US
dc.identifier.scopus85052021862-
dc.identifier.isi000447747100044-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid6602080284-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid9634135600-
dc.description.lastpage400en_US
dc.description.firstpage394en_US
dc.relation.volume2018-Januaryen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid6442981-
dc.contributor.daisngid328608-
dc.contributor.daisngid4069296-
dc.contributor.daisngid1189663-
dc.contributor.daisngid1986395-
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Fred, A-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.date.coverdateEnero 2018en_US
dc.identifier.conferenceidevents121117-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate16-01-2018-
crisitem.event.eventsenddate18-01-2018-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (439,99 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.