Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42204
Título: | Aggregation of dependent risks inmixtures of exponential distributions and extensions | Autores/as: | Sarabia, José María Gómez-Déniz, Emilio Prieto, Faustino Jordá, Vanesa |
Clasificación UNESCO: | 53 Ciencias económicas | Palabras clave: | Aggregation Dependent random variables Laplace transform Collective risk model Partial Bell polynomials |
Fecha de publicación: | 2018 | Editor/a: | 0515-0361 | Publicación seriada: | ASTIN Bulletin | Resumen: | The distribution of the sum of dependent risks is a crucial aspect in actuarial sciences, risk management and in many branches of applied probability. In this paper, we obtain analytic expressions for the probability density function (pdf) and the cumulative distribution function (cdf) of aggregated risks, modelled according to a mixture of exponential distributions. We first review the properties of the multivariate mixture of exponential distributions, to then obtain the analytical formulation for the pdf and the cdf for the aggregated distribution. We study in detail some specific families with Pareto (Sarabia et al., 2016), gamma, Weibull and inverse Gaussian mixture of exponentials (Whitmore and Lee, 1991) claims. We also discuss briefly the computation of risk measures, formulas for the ruin probability (Albrecher et al., 2011) and the collective risk model. An extension of the basic model based on mixtures of gamma distributions is proposed, which is one of the suggested directions for future research. | URI: | http://hdl.handle.net/10553/42204 | ISSN: | 0515-0361 | DOI: | 10.1017/asb.2018.13 | Fuente: | ASTIN Bulletin[ISSN 0515-0361],v. 48, p. 1079-1107 |
Colección: | Artículos |
Citas SCOPUSTM
19
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
17
actualizado el 24-nov-2024
Visitas
34
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.