Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42204
Título: Aggregation of dependent risks inmixtures of exponential distributions and extensions
Autores/as: Sarabia, José María
Gómez-Déniz, Emilio 
Prieto, Faustino
Jordá, Vanesa
Clasificación UNESCO: 53 Ciencias económicas
Palabras clave: Aggregation
Dependent random variables
Laplace transform
Collective risk model
Partial Bell polynomials
Fecha de publicación: 2018
Editor/a: 0515-0361
Publicación seriada: ASTIN Bulletin 
Resumen: The distribution of the sum of dependent risks is a crucial aspect in actuarial sciences, risk management and in many branches of applied probability. In this paper, we obtain analytic expressions for the probability density function (pdf) and the cumulative distribution function (cdf) of aggregated risks, modelled according to a mixture of exponential distributions. We first review the properties of the multivariate mixture of exponential distributions, to then obtain the analytical formulation for the pdf and the cdf for the aggregated distribution. We study in detail some specific families with Pareto (Sarabia et al., 2016), gamma, Weibull and inverse Gaussian mixture of exponentials (Whitmore and Lee, 1991) claims. We also discuss briefly the computation of risk measures, formulas for the ruin probability (Albrecher et al., 2011) and the collective risk model. An extension of the basic model based on mixtures of gamma distributions is proposed, which is one of the suggested directions for future research.
URI: http://hdl.handle.net/10553/42204
ISSN: 0515-0361
DOI: 10.1017/asb.2018.13
Fuente: ASTIN Bulletin[ISSN 0515-0361],v. 48, p. 1079-1107
Colección:Artículos
Vista completa

Citas SCOPUSTM   

19
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 24-nov-2024

Visitas

34
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.