Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42146
DC FieldValueLanguage
dc.contributor.authorLorenzo-Navarro, Javieren_US
dc.contributor.authorCastrillon-Santana, Modestoen_US
dc.contributor.authorGómez, Mayen_US
dc.contributor.authorHerrera, Aliciaen_US
dc.contributor.authorMarín-Reyes, Pedro A.en_US
dc.contributor.otherHerrera, Alicia-
dc.date.accessioned2018-10-16T09:30:06Z-
dc.date.available2018-10-16T09:30:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9789897582769en_US
dc.identifier.urihttp://hdl.handle.net/10553/42146-
dc.description.abstractMicroplastic particles have become an important ecological problem due to the huge amount of plastics debris that ends up in the sea. An additional impact is the ingestion of microplastics by marine species, and thus microplastics enter into the food chain with unpredictable effects on humans. In addition to the exploration of their presence in fishes, researchers are studying the presence of microplastics in coastal areas. The workload is therefore time consuming, due to the need to carry out regular campaigns to quantify their presence in the samples. So, in this work a method for automatic counting and classifying microplastic particles is presented. To the best of our knowledge, this is the first proposal to address this challenging problem. The method makes use of Computer Vision techniques for analyzing the acquired images of the samples; and Machine Learning techniques to develop accurate classifiers of the different types of microplastic particles that are considered. The obtained results show that making use of color based and shape based features along with a Random Forest classifier, an accuracy of 96.6% is achieved recognizing four types of particles: pellets, fragments, tar and line.en_US
dc.languageengen_US
dc.relation.ispartofICPRAM 2018 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methodsen_US
dc.sourceICPRAM 2018 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods,v. 2018-January, p. 646-652en_US
dc.subject251001 Oceanografía biológicaen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherMicroplasticsen_US
dc.subject.otherBeach pollutionen_US
dc.subject.otherAutomatic countingen_US
dc.subject.otherMicroplastics classification.en_US
dc.titleAutomatic counting and classification of microplastic particlesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference7th International Conference on Pattern Recognition Applications and Methods (ICPRAM)
dc.relation.conference7th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2018
dc.identifier.doi10.5220/0006725006460652
dc.identifier.scopus85051348546-
dc.identifier.isi000447747100079-
dcterms.isPartOfProceedings Of The 7Th International Conference On Pattern Recognition Applications And Methods (Icpram 2018)-
dcterms.sourceProceedings Of The 7Th International Conference On Pattern Recognition Applications And Methods (Icpram 2018), p. 646-652-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid57198776493-
dc.contributor.authorscopusid7401734371-
dc.contributor.authorscopusid57193161519-
dc.contributor.authorscopusid57191274555-
dc.description.lastpage652-
dc.description.firstpage646-
dc.relation.volume2018-January-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000447747100079-
dc.contributor.daisngid2489695-
dc.contributor.daisngid32145428
dc.contributor.daisngid1060138-
dc.contributor.daisngid1273639
dc.contributor.daisngid29106133-
dc.contributor.daisngid4619616-
dc.contributor.daisngid15775956-
dc.identifier.investigatorRIDL-5060-2014-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J
dc.contributor.wosstandardWOS:Castrillon-Santana, M
dc.contributor.wosstandardWOS:Gomez, M
dc.contributor.wosstandardWOS:Herrera, A
dc.contributor.wosstandardWOS:Marin-Reyes, PA
dc.date.coverdateEnero 2018
dc.identifier.conferenceidevents121632
dc.identifier.conferenceidevents121117
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.orcid0000-0002-7396-6493-
crisitem.author.orcid0000-0002-5538-6161-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
crisitem.author.fullNameGómez Cabrera, María Milagrosa-
crisitem.author.fullNameHerrera Ulibarri, Alicia Andrea-
Appears in Collections:Actas de congresos
Thumbnail
PDF
Adobe PDF (554,5 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.