Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42146
Título: Automatic counting and classification of microplastic particles
Autores/as: Lorenzo-Navarro, Javier 
Castrillon-Santana, Modesto 
Gómez, May 
Herrera, Alicia 
Marín-Reyes, Pedro A.
Clasificación UNESCO: 251001 Oceanografía biológica
120304 Inteligencia artificial
Palabras clave: Microplastics
Beach pollution
Automatic counting
Microplastics classification.
Fecha de publicación: 2018
Publicación seriada: ICPRAM 2018 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods
Conferencia: 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM) 
7th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2018 
Resumen: Microplastic particles have become an important ecological problem due to the huge amount of plastics debris that ends up in the sea. An additional impact is the ingestion of microplastics by marine species, and thus microplastics enter into the food chain with unpredictable effects on humans. In addition to the exploration of their presence in fishes, researchers are studying the presence of microplastics in coastal areas. The workload is therefore time consuming, due to the need to carry out regular campaigns to quantify their presence in the samples. So, in this work a method for automatic counting and classifying microplastic particles is presented. To the best of our knowledge, this is the first proposal to address this challenging problem. The method makes use of Computer Vision techniques for analyzing the acquired images of the samples; and Machine Learning techniques to develop accurate classifiers of the different types of microplastic particles that are considered. The obtained results show that making use of color based and shape based features along with a Random Forest classifier, an accuracy of 96.6% is achieved recognizing four types of particles: pellets, fragments, tar and line.
URI: http://hdl.handle.net/10553/42146
ISBN: 9789897582769
DOI: 10.5220/0006725006460652
Fuente: ICPRAM 2018 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods,v. 2018-January, p. 646-652
Colección:Actas de congresos
miniatura
PDF
Adobe PDF (554,5 kB)
Vista completa

Citas SCOPUSTM   

27
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 15-dic-2024

Visitas

970
actualizado el 10-ago-2024

Descargas

973
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.