Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/42145
Title: | SET analysis and radiation hardening techniques for CMOS LNA topologies | Authors: | Mateos Angulo, Sergio San Miguel Montesdeoca, Mario Mayor Duarte, Daniel Khemchandani, S. L. javier del pino suarez |
UNESCO Clasification: | 330790 Microelectrónica | Keywords: | SET TCAD Low noise amplifier ( LNA ) Radiation hardened by design Heavy ion, et al |
Issue Date: | 2018 | Publisher: | 0268-1242 | Journal: | Semiconductor Science and Technology | Abstract: | This paper analyses the effects of single-event transients (SETs) on CMOS low noise amplifiers (LNA) designed for a 0.18 mm technology. Two well-known topologies, the common-source and common-gate cascodes, have been analysed when heavy ions strike the most sensitive nodes of these structures. In order to simulate these strikes both a physics-based technology computer aided design (TCAD) tool and an electrical circuit domain simulator have been used. This way the physics information given by the TCAD tool is combined with the fast transient simulations performed in circuit simulators. To study their SET performance, the maximum voltage peak and the recovery time of the output signal were calculated for both LNAs. Additionally, a safe operating area can be defined, setting the boundaries for acceptable SETs. Radiation hardening by design techniques have been applied at the most vulnerable nodes of both LNAs. The proposed mitigation approaches make both LNAs hardened against radiation, considerably improving their SET performance. | URI: | http://hdl.handle.net/10553/42145 | ISSN: | 0268-1242 | DOI: | 10.1088/1361-6641/aacff2 | Source: | Semiconductor Science and Technology[ISSN 0268-1242],v. 33 (085010) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
5
checked on Dec 15, 2024
WEB OF SCIENCETM
Citations
4
checked on Dec 15, 2024
Page view(s)
89
checked on Jul 27, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.