Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42112
DC FieldValueLanguage
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorEugenio González, Franciscoen_US
dc.contributor.authorPerdomo, Ulisesen_US
dc.contributor.authorMedina, Anabellaen_US
dc.date.accessioned2018-10-10T08:31:22Z-
dc.date.available2018-10-10T08:31:22Z-
dc.date.issued2016en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/42112-
dc.description.abstractThe precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change.en_US
dc.languageengen_US
dc.relation.ispartofSensorsen_US
dc.sourceSensors (Switzerland) [ISSN 1424-8220], v. 16 (10), p. 1624, (Octubre 2016)en_US
dc.subject241703 Botánica generalen_US
dc.subject12 Matemáticasen_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.other6Sen_US
dc.subject.otherATCORen_US
dc.subject.otherAtmospheric correctionen_US
dc.subject.otherFLAASHen_US
dc.subject.otherHigh resolution WorldView-2 imagesen_US
dc.subject.otherSemi-arid ecosystemsen_US
dc.titleAssessment of atmospheric algorithms to retrieve vegetation in natural protected areas using multispectral high resolution imageryen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s16101624en_US
dc.identifier.scopus84990990064-
dc.identifier.isi000386131600076-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid6603605357-
dc.contributor.authorscopusid57191484467-
dc.contributor.authorscopusid55334778300-
dc.identifier.issue10-
dc.relation.volume16en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid702897-
dc.contributor.daisngid5242233-
dc.contributor.daisngid18375085-
dc.contributor.daisngid5194317-
dc.description.notasThis article belongs to the Special Issue State-of-the-Art Sensors Technology in Spain 2016en_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Marcello, J-
dc.contributor.wosstandardWOS:Eugenio, F-
dc.contributor.wosstandardWOS:Perdomo, U-
dc.contributor.wosstandardWOS:Medina, A-
dc.date.coverdateOctubre 2016en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,576
dc.description.jcr2,677
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameEugenio González, Francisco-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (16,92 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.