Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/42083
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Renggli, Christian J. | en_US |
dc.contributor.author | Wiesmaier, Sebastian | en_US |
dc.contributor.author | De Campos, Cristina P. | en_US |
dc.contributor.author | Hess, Kai-Uwe | en_US |
dc.contributor.author | Dingwell, Donald B. | en_US |
dc.date.accessioned | 2018-10-05T07:35:09Z | - |
dc.date.available | 2018-10-05T07:35:09Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 0010-7999 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/42083 | - |
dc.description.abstract | A time series of experiments at high temperature have been performed to investigate the influence of particle settling on magma mixing. A natural rhyolite glass was held above a natural basalt glass in a platinum crucible. After melting of the glasses at superliquidus temperatures, a platinum sphere was placed on the upper surface of the rhyolitic melt and sank into the experimental column (rhyolitic melt above basaltic melt). Upon falling through the rhyolitic–basaltic melt interface, the Pt sphere entrained a filament of rhyolitic melt in its further fall. The quenched products of the experiments were imaged using X-ray microCT methods. The images of our time series of experiments document the formation of a rhyolite filament as it is entrained into the underlying basalt by the falling platinum sphere. When the Pt particle reached the bottom of the crucible, the entrained rhyolitic filament started to ascend buoyantly up to the initial rhyolitic–basaltic interface. This generated a significant thickness increase of a comingled “melange” layer at the interface due to “liquid rope coiling” and piling up of the filament. As a consequence, the basalt/rhyolite interface was greatly enlarged and diffusive hybridisation greatly accelerated. Further, bubbles, originating at the interface, are observed to have risen into the overlying rhyolite dragging basalt filaments with them. Upon crossing the basalt/rhyolite interface, the bubbles have non-spherical shapes as they adapt to the differing surface tensions of basaltic and rhyolitic melts. Major element profiles, measured across the rhyolite filaments, exhibit asymmetrical shapes from the rhyolite into the basalt. Na and Ti reveal uphill diffusion from the rhyolite towards the interface in the filament cross sections. These results reveal the potential qualitative complexity of the mingling process between rhyolitic and basaltic magmas in the presence of sinking crystals. They imply that crystal-rich magma mingling may be expected to be accelerated with respect to crystal-poor systems. We urge the further fluid dynamic analysis of these phenomena, obtainable for the first time using detailed tomographic imaging. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Contributions to mineralogy and petrology | en_US |
dc.source | Contributions to Mineralogy and Petrology [ISSN 0010-7999], v. 171 (11), (Noviembre 2016) | en_US |
dc.subject | 250621 Vulcanología | en_US |
dc.subject.other | Liquid rope coiling | en_US |
dc.subject.other | Magma mixing | en_US |
dc.subject.other | Particle settling | en_US |
dc.subject.other | Rhyolite–basalt | en_US |
dc.subject.other | X-ray microCT | en_US |
dc.title | Magma mixing induced by particle settling | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00410-016-1305-1 | en_US |
dc.identifier.scopus | 2-s2.0-84991503832 | - |
dc.identifier.isi | 000388590800009 | - |
dc.contributor.authorscopusid | 56505336700 | - |
dc.contributor.authorscopusid | 27667923400 | - |
dc.contributor.authorscopusid | 56256730300 | - |
dc.contributor.authorscopusid | 7201815747 | - |
dc.contributor.authorscopusid | 7005060998 | - |
dc.identifier.issue | 11 | - |
dc.relation.volume | 171 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 6873041 | - |
dc.contributor.daisngid | 2725969 | - |
dc.contributor.daisngid | 32315822 | - |
dc.contributor.daisngid | 445520 | - |
dc.contributor.daisngid | 34119 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Renggli, CJ | - |
dc.contributor.wosstandard | WOS:Wiesmaier, S | - |
dc.contributor.wosstandard | WOS:De Campos, CP | - |
dc.contributor.wosstandard | WOS:Hess, KU | - |
dc.contributor.wosstandard | WOS:Dingwell, DB | - |
dc.date.coverdate | Noviembre 2016 | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 2,235 | |
dc.description.jcr | 2,913 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
16
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 10, 2024
Page view(s)
106
checked on Jul 27, 2024
Download(s)
119
checked on Jul 27, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.