Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42013
DC FieldValueLanguage
dc.contributor.authorCristóbal, Teresaen_US
dc.contributor.authorPadrón, Gabinoen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.contributor.authorAlayón, Franciscoen_US
dc.contributor.authorGarcía, Carmelo R.en_US
dc.date.accessioned2018-09-28T08:27:09Z-
dc.date.available2018-09-28T08:27:09Z-
dc.date.issued2018en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/42013-
dc.description.abstractRoad-based mass transit systems are an effective means to combat the negative impact of transport that is based on private vehicles. Providing quality of service in this type of transit system is a priority for transport authorities. In these systems, travel time (TT) is a basic factor in quality of service. This paper presents a methodology, based on data mining, for analyzing TT in a mass transit system that is planned by timetable. The objective of the methodology is to understand the behavior patterns of TTs on the different routes of the transport network, as well as the factors that influence these patterns. To achieve this objective, the methodology uses clustering techniques to process the GPS data provided by the vehicles of the public transport fleet. The results that were obtained when implementing this methodology in a public transport company are presented as a use case, demonstrating its validity.en_US
dc.languageengen_US
dc.publisher2169-3536
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 6, p. 32861-32873en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject.otherRoad-based mass transit systemsen_US
dc.subject.otherTravel timeen_US
dc.subject.otherIntelligent transportation systemsen_US
dc.subject.otherData miningen_US
dc.subject.otherPattern clusteringen_US
dc.subject.otherGlobal positioning systemen_US
dc.titleSystematic approach to analyze travel time in road-based mass transit systems based on data miningen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2018.2837498en_US
dc.identifier.scopus85047002962-
dc.identifier.isi000438541400001-
dc.contributor.authorscopusid56495304700-
dc.contributor.authorscopusid22986240200-
dc.contributor.authorscopusid13006053800-
dc.contributor.authorscopusid6506717943-
dc.contributor.authorscopusid7401486323-
dc.description.lastpage32873en_US
dc.description.firstpage32861en_US
dc.relation.volume6en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid4451412-
dc.contributor.daisngid2375619-
dc.contributor.daisngid6245793-
dc.contributor.daisngid1986574-
dc.contributor.daisngid1412377-
dc.identifier.externalWOS:000438541400001-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cristobal, T-
dc.contributor.wosstandardWOS:Padron, G-
dc.contributor.wosstandardWOS:Quesada-Arencibia, A-
dc.contributor.wosstandardWOS:Alayon, F-
dc.contributor.wosstandardWOS:Garcia, CR-
dc.date.coverdateMayo 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,609
dc.description.jcr4,098
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,54 MB)
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

4
checked on Dec 15, 2024

Page view(s)

96
checked on Jun 15, 2024

Download(s)

143
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.