Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41822
Título: Applying time-dependent attributes to represent demand in road mass transit systems
Autores/as: Cristóbal, Teresa
Padrón, Gabino 
Lorenzo-Navarro, Javier 
Quesada-Arencibia, Alexis 
García, Carmelo R. 
Clasificación UNESCO: 120304 Inteligencia artificial
3327 Tecnología de los sistemas de transporte
Palabras clave: Clustering
Entropy
Attribute creation
Data mining
Intelligent transport systems, et al.
Fecha de publicación: 2018
Publicación seriada: Entropy 
Resumen: The development of efficient mass transit systems that provide quality of service is a major challenge for modern societies. To meet this challenge, it is essential to understand user demand. This article proposes using new time-dependent attributes to represent demand, attributes that differ from those that have traditionally been used in the design and planning of this type of transit system. Data mining was used to obtain these new attributes; they were created using clustering techniques, and their quality evaluated with the Shannon entropy function and with neural networks. The methodology was implemented on an intercity public transport company and the results demonstrate that the attributes obtained offer a more precise understanding of demand and enable predictions to be made with acceptable precision.
URI: http://hdl.handle.net/10553/41822
ISSN: 1099-4300
DOI: 10.3390/e20020133
Fuente: Entropy [ISSN 1099-4300], v. 20 (2), 133
Colección:Artículos
miniatura
pdf
Adobe PDF (3,94 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

80
actualizado el 16-dic-2023

Descargas

83
actualizado el 16-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.