Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41822
Título: | Applying time-dependent attributes to represent demand in road mass transit systems | Autores/as: | Cristóbal, Teresa Padrón, Gabino Lorenzo-Navarro, Javier Quesada-Arencibia, Alexis García, Carmelo R. |
Clasificación UNESCO: | 120304 Inteligencia artificial 3327 Tecnología de los sistemas de transporte |
Palabras clave: | Clustering Entropy Attribute creation Data mining Intelligent transport systems, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | Entropy | Resumen: | The development of efficient mass transit systems that provide quality of service is a major challenge for modern societies. To meet this challenge, it is essential to understand user demand. This article proposes using new time-dependent attributes to represent demand, attributes that differ from those that have traditionally been used in the design and planning of this type of transit system. Data mining was used to obtain these new attributes; they were created using clustering techniques, and their quality evaluated with the Shannon entropy function and with neural networks. The methodology was implemented on an intercity public transport company and the results demonstrate that the attributes obtained offer a more precise understanding of demand and enable predictions to be made with acceptable precision. | URI: | http://hdl.handle.net/10553/41822 | ISSN: | 1099-4300 | DOI: | 10.3390/e20020133 | Fuente: | Entropy [ISSN 1099-4300], v. 20 (2), 133 |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
80
actualizado el 16-dic-2023
Descargas
83
actualizado el 16-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.