Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/41818
DC FieldValueLanguage
dc.contributor.authorDíaz Martín, Maríaen_US
dc.contributor.authorGuerra, Raúlen_US
dc.contributor.authorLópez, Sebastiánen_US
dc.contributor.authorSarmiento Rodríguez, Robertoen_US
dc.date.accessioned2018-09-04T07:45:47Z-
dc.date.available2018-09-04T07:45:47Z-
dc.date.issued2018en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://hdl.handle.net/10553/41818-
dc.description.abstractAnomaly detection (AD) is an important technique in hyperspectral data analysis that permits to distinguish rare objects with unknown spectral signatures that are particularly not abundant in a scene. In this paper, a novel algorithm for an accurate detection of anomalies in hyperspectral images with a low computational complexity, named ADALOC(2), is proposed. It is based on two main processing stages. First, a set of characteristic pixels that best represent both anomaly and background classes are extracted applying orthogonal projection techniques. Second, the abundancemaps associated to these pixels are estimated. Under the assumption that the anomaly class is composed of a scarce group of image pixels, rare targets can be identified from abundance maps characterized by a representation coefficient matrix with a large amount of almost zero elements. Unlike the other algorithms of the state of the art, the ADALOC2 algorithm has been specially designed for being efficiently implemented into parallel hardware devices for applications under real-time constraints. To achieve this, the ADALOC2 algorithm uses simple and highly parallelized operations, avoiding to perform complex matrix operations such as the computation of an inverse matrix or the extraction of eigen-values and eigenvectors. An extensive set of simulations using the most representative state-of-the-art AD algorithms and both real and synthetic hyperspectral data sets have been conducted. Moreover, extra assessment metrics apart from classical receiver operating characteristic curves have been defined in order to make deeper comparisons. The obtained results clearly support the benefits of our proposal, both in terms of the accuracy of the detection results and the processing power demanded.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensingen_US
dc.sourceIEEE Transactions on Geoscience and Remote Sensing [ISSN 0196-2892], v. 56 (2), p. 1159-1176, (Febrero 2018)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherADALOC algorithmen_US
dc.subject.otherAnomaly detection (AD)en_US
dc.subject.otherHyperspectral imageryen_US
dc.subject.otherOrthogonal projectionsen_US
dc.subject.otherReal-time applicationsen_US
dc.titleAn algorithm for an accurate detection of anomalies in hyperspectral images with a low computational complexityen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2017.2761019en_US
dc.identifier.scopus85032448799-
dc.identifier.isi000424627500044-
dc.contributor.authorscopusid57192832495-
dc.contributor.authorscopusid56333613300-
dc.contributor.authorscopusid57187722000-
dc.contributor.authorscopusid35609452100-
dc.description.lastpage1176en_US
dc.identifier.issue2-
dc.description.firstpage1159en_US
dc.relation.volume56en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid32106350-
dc.contributor.daisngid2216671-
dc.contributor.daisngid465777-
dc.contributor.daisngid116294-
dc.identifier.externalWOS:000424627500044-
dc.identifier.externalWOS:000424627500044-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Diaz, M-
dc.contributor.wosstandardWOS:Guerra, R-
dc.contributor.wosstandardWOS:Lopez, S-
dc.contributor.wosstandardWOS:Sarmiento, R-
dc.date.coverdateFebrero 2018en_US
dc.identifier.ulpgcen_US
dc.description.sjr2,763
dc.description.jcr5,63
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-2670-8149-
crisitem.author.orcid0000-0002-4303-3051-
crisitem.author.orcid0000-0002-2360-6721-
crisitem.author.orcid0000-0002-4843-0507-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameDíaz Martín,María-
crisitem.author.fullNameGuerra Hernández,Raúl Celestino-
crisitem.author.fullNameLópez Suárez, Sebastián Miguel-
crisitem.author.fullNameSarmiento Rodríguez, Roberto-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

40
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

38
checked on Nov 24, 2024

Page view(s)

132
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.