Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41759
Título: | Fast and accurate circle tracking using active contour models | Autores/as: | Cuenca, Carmelo González, Esther Trujillo, Agustín Esclarín, Julio Mazorra, Luis Alvarez, Luis Martinez-Mera, Juan Antonio Tahoces, Pablo G. Carreira, José M. |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación |
Palabras clave: | Circle Tracking Active Contour Models Snakes GPU–CUDA |
Fecha de publicación: | 2018 | Proyectos: | Nuevos Modelos Matemáticos Para la Segmentación y Clasificación en Imágenes | Publicación seriada: | Journal of Real-Time Image Processing | Resumen: | In this paper, we deal with the problem of circle tracking across an image sequence. We propose an active contour model based on a new energy. The center and radius of the circle is optimized in each frame by looking for local minima of such energy. The energy estimation does not require edge extraction, it uses the image convolution with a Gaussian kernel and its gradient which is computed using a GPU-CUDA implementation. We propose a Newton-Raphson type algorithm to estimate a local minimum of the energy. The combination of an active contour model which does not require edge detection and a GPU-CUDA implementation provides a fast and accurate method for circle tracking. We present some experimental results on synthetic data, on real images, and on medical images in the context of aorta vessel segmentation in computed tomography (CT) images. | URI: | http://hdl.handle.net/10553/41759 | ISSN: | 1861-8200 | DOI: | 10.1007/s11554-015-0531-5 | Fuente: | Journal of Real-Time Image Processing[ISSN 1861-8200],v. 14, p. 793-802 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.