Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41437
Título: Who is really talking? a visual-based speaker diarization strategy
Autores/as: Marín-Reyes, Pedro A. 
Lorenzo-Navarro, Javier 
Castrillón-Santana, Modesto 
Sánchez-Nielsen, Elena
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Visual diarization strategies
Local descriptors
Histogram distances
F-reid
Fecha de publicación: 2018
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 16th International Conference on Computer Aided Systems Theory, (EUROCAST 2017) 
Resumen: The speaker activity at the Canary Islands Parliament is recorded, and later manually annotated. This task can be modelled as a diarization problem, that is a way to automatically annotated who and when is speaking. In this paper, we propose the use of the visual cue to solve the diarization task. To perform this approach, it is mandatory to detect individuals, determine the one speaking, and extract features for matching. In order to test the performance of our proposal, we evaluate four different strategies based on the visual shot features.
URI: http://hdl.handle.net/10553/41437
ISBN: 978-3-319-74726-2
ISSN: 0302-9743
DOI: 10.1007/978-3-319-74727-9_38
Fuente: Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science, v. 10672 LNCS, p. 322-329
Colección:Capítulo de libro
miniatura
pdf
Adobe PDF (1,66 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 15-dic-2024

Visitas

213
actualizado el 31-oct-2024

Descargas

104
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.