Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/41417
DC FieldValueLanguage
dc.contributor.authorFreire-Obregón, David-
dc.contributor.authorNarducci, Fabio-
dc.contributor.authorBarra, Silvio-
dc.contributor.authorCastrillón-Santana, Modesto-
dc.date.accessioned2018-06-28T09:57:27Z-
dc.date.available2018-06-28T09:57:27Z-
dc.date.issued2017-
dc.identifier.issn0167-8655-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/41417-
dc.description.abstractIn the present paper, we propose a source camera identification (SCI) method for mobile devices based on deep learning. Recently, convolutional neural networks (CNNs) have shown a remarkable performance on several tasks such as image recognition, video analysis or natural language processing. A CNN consists on a set of layers where each layer is composed by a set of high pass filters which are applied all over the input image. This convolution process provides the unique ability to extract features automatically from data and to learn from those features. Our proposal describes a CNN architecture which is able to infer the noise pattern of mobile camera sensors (also known as camera fingerprint) with the aim at detecting and identifying not only the mobile device used to capture an image (with a 98% of accuracy), but also from which embedded camera the image was captured. More specifically, we provide an extensive analysis on the proposed architecture considering different configurations. The experiment has been carried out using the images captured from different mobile device cameras (MICHE-I Dataset) and the obtained results have proved the robustness of the proposed method.-
dc.languageeng-
dc.relation.ispartofPattern Recognition Letters-
dc.sourcePattern Recognition Letters [ISSN 0167-8655], v.126, p. 86-91 (2019)-
dc.subject120325 Diseño de sistemas sensores-
dc.subject120304 Inteligencia artificial-
dc.subject.otherIris recognition-
dc.subject.otherNetworks-
dc.subject.otherSource camera identification-
dc.subject.otherConvolutional neural networks-
dc.subject.otherMobile devices-
dc.subject.otherDeep learning-
dc.titleDeep learning for source camera identification on mobile devices-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.patrec.2018.01.005-
dc.identifier.scopus85040338014-
dc.identifier.isi000487014900011-
dc.contributor.orcid0000-0003-2378-4277-
dc.contributor.orcid0000-0003-4879-7138-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid55303744900-
dc.contributor.authorscopusid56005376300-
dc.contributor.authorscopusid57198776493-
dc.identifier.eissn1872-7344-
dc.description.lastpage91-
dc.description.firstpage86-
dc.relation.volume126-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid3754707-
dc.contributor.daisngid30416512-
dc.contributor.daisngid30900419-
dc.contributor.daisngid32145428-
dc.description.numberofpages6-
dc.utils.revision-
dc.contributor.wosstandardWOS:Freire-Obregon, D-
dc.contributor.wosstandardWOS:Narducci, F-
dc.contributor.wosstandardWOS:Barra, S-
dc.contributor.wosstandardWOS:Castrillon-Santana, M-
dc.date.coverdateSeptiembre 2019-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,662-
dc.description.jcr1,954-
dc.description.sjrqQ1-
dc.description.jcrqQ2-
dc.description.scieSCIE-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Artículos
Unknown (1,3 MB)
Show simple item record

SCOPUSTM   
Citations

98
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

68
checked on Dec 8, 2024

Page view(s)

118
checked on Aug 3, 2024

Download(s)

33
checked on Aug 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.