Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41417
Título: | Deep learning for source camera identification on mobile devices | Autores/as: | Freire-Obregón, David Narducci, Fabio Barra, Silvio Castrillón-Santana, Modesto |
Clasificación UNESCO: | 120325 Diseño de sistemas sensores 120304 Inteligencia artificial |
Palabras clave: | Iris recognition Networks Source camera identification Convolutional neural networks Mobile devices, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | Pattern Recognition Letters | Resumen: | In the present paper, we propose a source camera identification (SCI) method for mobile devices based on deep learning. Recently, convolutional neural networks (CNNs) have shown a remarkable performance on several tasks such as image recognition, video analysis or natural language processing. A CNN consists on a set of layers where each layer is composed by a set of high pass filters which are applied all over the input image. This convolution process provides the unique ability to extract features automatically from data and to learn from those features. Our proposal describes a CNN architecture which is able to infer the noise pattern of mobile camera sensors (also known as camera fingerprint) with the aim at detecting and identifying not only the mobile device used to capture an image (with a 98% of accuracy), but also from which embedded camera the image was captured. More specifically, we provide an extensive analysis on the proposed architecture considering different configurations. The experiment has been carried out using the images captured from different mobile device cameras (MICHE-I Dataset) and the obtained results have proved the robustness of the proposed method. | URI: | http://hdl.handle.net/10553/41417 | ISSN: | 0167-8655 | DOI: | 10.1016/j.patrec.2018.01.005 | Fuente: | Pattern Recognition Letters [ISSN 0167-8655], v.126, p. 86-91 (2019) |
Colección: | Artículos |
Citas SCOPUSTM
98
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
68
actualizado el 17-nov-2024
Visitas
118
actualizado el 03-ago-2024
Descargas
33
actualizado el 03-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.