Please use this identifier to cite or link to this item:
Title: A new algorithm for the on-board compression of hyperspectral images
Authors: Guerra, Raúl 
Barrios Alfaro, Yubal 
Díaz Martín, María 
Santos, Lucana 
López, Sebastián 
Sarmiento Rodríguez, Roberto 
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
220921 Espectroscopia
Keywords: Hyperspectral compression
Lossy compression
On-board compression
Orthogonal projections
Gram–Schmidt orthogonalization, et al
Issue Date: 2018
Project: European Initiative to Enable Validation for Highly Automated Safe and Secure Systems 
Iniciativa Europea Para Facilitar la Validacion de Sistemas Seguros y Altamente Automatizados 
Sistemas Electronicos Empotrados Confiables Para Control en Ciudades Bajo Situaciones Atipicas 
Journal: Remote Sensing 
Abstract: Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth's surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA), is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios.
ISSN: 2072-4292
DOI: 10.3390/rs10030428
Source: Remote Sensing [ISSN 2072-4292], v. 10 (3), 428, (2018)
Appears in Collections:Artículos
Adobe PDF (13,92 MB)
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.