Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40344
Campo DC Valoridioma
dc.contributor.authorBhati, Deepeshen_US
dc.contributor.authorKumawat, Poojaen_US
dc.contributor.authorGómez–Déniz, E.en_US
dc.date.accessioned2018-06-14T11:17:44Z-
dc.date.available2018-06-14T11:17:44Z-
dc.date.issued2017en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/10553/40344-
dc.description.abstractIn this article, a new mixed Poisson distribution is introduced. This new distribution is obtained by utilizing mixing process, with Poisson distribution as mixed distribution and Transmuted Exponential as mixing distribution. Distributional properties like unimodality, moments, overdispersion, infinite divisibility are studied. Three methods viz. Method of moment, Method of moment and proportion, and Maximum-likelihood method are used for parameter estimation. Further, an actuarial application in context of aggregate claim distribution is presented. Finally, to showthe applicability and superiority of proposed model, we discuss count data and count regression modeling and compare with somewell established models.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Statistics - Theory and Methodsen_US
dc.sourceCommunications in Statistics - Theory and Methods[ISSN 0361-0926],v. 46, p. 11060-11076en_US
dc.subject1202 Análisis y análisis funcionalen_US
dc.subject.otherCount regressionen_US
dc.subject.otherHealth care dataen_US
dc.subject.otherMixed Poisson distributionen_US
dc.subject.otherOver-dispersionen_US
dc.subject.otherTransmuted exponential familyen_US
dc.titleA new count model generated from mixed Poisson transmuted exponential family with an application to health care dataen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticlees
dc.identifier.doi10.1080/03610926.2016.1257712
dc.identifier.scopus85026751296
dc.identifier.isi000412555500011-
dc.contributor.authorscopusid56993499100
dc.contributor.authorscopusid57195274695
dc.contributor.authorscopusid15724912000
dc.identifier.eissn1532-415X-
dc.description.lastpage11076-
dc.identifier.issue22-
dc.description.firstpage11060-
dc.relation.volume46-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid3737706
dc.contributor.daisngid21574061
dc.contributor.daisngid610603
dc.contributor.wosstandardWOS:Bhati, D
dc.contributor.wosstandardWOS:Kumawat, P
dc.contributor.wosstandardWOS:Gomez-Deniz, E
dc.date.coverdateNoviembre 2017
dc.identifier.ulpgces
dc.description.sjr0,352
dc.description.jcr0,353
dc.description.sjrqQ3
dc.description.jcrqQ4
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

30
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 17-nov-2024

Visitas

44
actualizado el 13-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.