Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/40327
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Shanawaz Mostafa, Sheikh | en_US |
dc.contributor.author | Mendonça, Fabio | en_US |
dc.contributor.author | Morgado-Dias, F. | en_US |
dc.contributor.author | Ravelo García, Antonio | en_US |
dc.date.accessioned | 2018-06-13T10:36:38Z | - |
dc.date.available | 2018-06-13T10:36:38Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781479976775 | |
dc.identifier.issn | 1562-5850 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/40327 | - |
dc.description.abstract | In a classical classification process, automatic sleep apnea detection involves creating and selecting the features, using prior knowledge, and apply them to a classifier. A different approach is applied in this paper, where a Deep Belief Network is used for feature extraction, without using domain-specific knowledge, and then the same network is used for classification of sleep apnea. The Deep Belief Network was created by stacking Restricted Boltzmann Machines. The first two layers are autoencoder type and the last layer is of soft-max type. The initial weights are calculated using unsupervised learning and, at the end, a supervised fine-tuning of the weights is performed. Two public databases, one with 8 subjects and other with 25 subjects, are tested using tenfold cross validation. The optimum number of hidden neurons of this problem is found using a search technique. The accuracy achieved from UCD database is 85.26\% and Apnea-ECG database is 97.64\%. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Proceedings - INES | en_US |
dc.source | Proceedings - INES [ISSN 1562-5850], 21st International Conference on Intelligent Engineering Systems (Larnaca, Cyprus), p. 000091-000096 | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.subject.other | Deep belief nets | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Restricted boltzmann machines | en_US |
dc.subject.other | Sleep apnea, | en_US |
dc.subject.other | Unsupervised | en_US |
dc.subject.other | Feature learning | en_US |
dc.title | SpO2 based sleep apnea detection using deep learning | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | es |
dc.relation.conference | 21st IEEE International Conference on Intelligent Engineering Systems (INES) | |
dc.relation.conference | 21st IEEE International Conference on Intelligent Engineering Systems, INES 2017 | |
dc.identifier.doi | 10.1109/INES.2017.8118534 | |
dc.identifier.scopus | 85043512764 | |
dc.identifier.isi | 000418333800015 | |
dc.contributor.authorscopusid | 55489640900 | |
dc.contributor.authorscopusid | 57195946416 | |
dc.contributor.authorscopusid | 57200602527 | |
dc.contributor.authorscopusid | 9634135600 | |
dc.description.lastpage | 96 | - |
dc.description.firstpage | 91 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 4069296 | |
dc.contributor.daisngid | 6442981 | |
dc.contributor.daisngid | 1189663 | |
dc.contributor.daisngid | 1986395 | |
dc.contributor.wosstandard | WOS:Mostafa, SS | |
dc.contributor.wosstandard | WOS:Mendonca, F | |
dc.contributor.wosstandard | WOS:Morgado-Dias, F | |
dc.contributor.wosstandard | WOS:Ravelo-Garcia, A | |
dc.date.coverdate | Noviembre 2017 | |
dc.identifier.conferenceid | events121074 | |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 20-10-2017 | - |
crisitem.event.eventsstartdate | 20-10-2017 | - |
crisitem.event.eventsenddate | 23-10-2017 | - |
crisitem.event.eventsenddate | 23-10-2017 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
66
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
13
actualizado el 25-abr-2021
Visitas
106
actualizado el 18-ene-2025
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.