Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40294
Campo DC Valoridioma
dc.contributor.authorIbarrola-Ulzurrun, E.en_US
dc.contributor.authorGonzalo-Martín, Consueloen_US
dc.contributor.authorMarcello, Javieren_US
dc.date.accessioned2018-06-11T09:07:50Z-
dc.date.available2018-06-11T09:07:50Z-
dc.date.issued2017en_US
dc.identifier.isbn9781510613201
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/40294-
dc.description.abstractNatural habitats are exposed to growing pressure due to intensification of land use and tourism development. Thus, obtaining information on the vegetation is necessary for conservation and management projects. In this context, remote sensing is an important tool for monitoring and managing habitats, being classification a crucial stage. The majority of image classifications techniques are based upon the pixel-based approach. An alternative is the object-based (OBIA) approach, in which a previous segmentation step merges image pixels to create objects that are then classified. Besides, improved results may be gained by incorporating additional spatial information and specific spectral indices into the classification process. The main goal of this work was to implement and assess object-based classification techniques on very-high resolution imagery incorporating spectral indices and contextual spatial information in the classification models. The study area was Teide National Park in Canary Islands (Spain) using Worldview-2 orthoready imagery. In the classification model, two common indices were selected Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI), as well as two specific Worldview-2 sensor indices, Worldview Vegetation Index and Worldview Soil Index. To include the contextual information, Grey Level Co-occurrence Matrices (GLCM) were used. The classification was performed training a Support Vector Machine with sufficient and representative number of vegetation samples (Spartocytisus supranubius, Pterocephalus lasiospermus, Descurainia bourgaeana and Pinus canariensis) as well as urban, road and bare soil classes. Confusion Matrices were computed to evaluate the results from each classification model obtaining the highest overall accuracy (90.07%) combining both Worldview indices with the GLCM-dissimilarity.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 10428, article number 104280Ven_US
dc.subject220921 Espectroscopiaen_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject.otherEcosystems managementen_US
dc.subject.otherOBIAen_US
dc.subject.otherSpectral-spatial classificationen_US
dc.subject.otherTeide National Parken_US
dc.subject.otherWorldview-2en_US
dc.titleVulnerable land ecosystems classification using spatial context and spectral indicesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference17th SPIE Conference on Earth Resources and Environmental Remote Sensing/GIS Applications
dc.relation.conferenceEarth Resources and Environmental Remote Sensing/GIS Applications VIII 2017
dc.identifier.doi10.1117/12.2278496
dc.identifier.scopus85040164834
dc.identifier.isi000423869700025-
dc.contributor.authorscopusid57193098496
dc.contributor.authorscopusid36561411500
dc.contributor.authorscopusid6602158797
dc.relation.volume10428-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid5530081
dc.contributor.daisngid1398100
dc.contributor.daisngid702897
dc.contributor.wosstandardWOS:Ibarrola-Ulzurrun, E
dc.contributor.wosstandardWOS:Gonzalo-Martin, C
dc.contributor.wosstandardWOS:Marcello, J
dc.date.coverdateEnero 2017
dc.identifier.conferenceidevents121079
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0001-5062-7491-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameIbarrola Ulzurrun, Edurne-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.event.eventsstartdate12-09-2017-
crisitem.event.eventsstartdate12-09-2017-
crisitem.event.eventsenddate14-09-2017-
crisitem.event.eventsenddate14-09-2017-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.