Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40197
Título: System model for a continuous improvement of road mass transit
Autores/as: Cristóbal Betancor, Teresa
Padrón, Gabino 
Quesada-Arencibia, Alexis 
Alayón, Francisco 
García Rodríguez, Carmelo Rubén 
Clasificación UNESCO: 3327 Tecnología de los sistemas de transporte
120304 Inteligencia artificial
Palabras clave: Automatic public transport planning
GPS data
Intelligent transport systems
Fecha de publicación: 2017
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 11th International Conference on Ubiquitous Computing and Ambient Intelligence, (UCAmI 2017) 
Resumen: The quality of service has a main relevance in mass transit systems, being the reliability a key factor for this quality. A system model for the continuous transport data acquisition and computing of these data to improve the quality of service of road mass transit systems is presented in this contribution. This proposal has been conceived to provide services adapted to the needs of the travellers by a continuous monitoring of the transport activity. The data obtained by buses on boarded systems have a special relevance in the proposed model, specially the data provided by the on boarded sensors, such as GPS positioning system. The system model has been applied to analyse the reliability of the operation scheduling of a road mass transit operator, and the results of this test are presented in this paper.
URI: http://hdl.handle.net/10553/40197
ISBN: 978-3-319-67584-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-67585-5_22
Fuente: Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science, v. 10586 LNCS, p. 207-212
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.