Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/40196
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Cristóbal Betancor, Teresa | en_US |
dc.contributor.author | Padrón, Gabino | en_US |
dc.contributor.author | Quesada-Arencibia, Alexis | en_US |
dc.contributor.author | Alayón, Francisco | en_US |
dc.contributor.author | García Rodríguez, Carmelo Rubén | en_US |
dc.date.accessioned | 2018-06-07T13:06:04Z | - |
dc.date.available | 2018-06-07T13:06:04Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 978-3-319-67584-8 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/40196 | - |
dc.description.abstract | The quality of the time travel prediction is a key factor in the transport of people and goods. This prediction is used in different facets related to management and planning of the transport activity, having special influence in the service quality in public transport. In this paper a methodology to analyse the factors which affect to travel time prediction in routes of road public transport is presented. This methodology uses vehicles GPS data to identify the causes of the travel time variability, georeferencing these causes. The infrastructure elements required, data used and the processing techniques are explained. The methodology was applied to analyse the travel time of a line of a public transport company, presenting the results of this test. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science, v. 10586 LNCS, p. 44-49 | en_US |
dc.subject | 3327 Tecnología de los sistemas de transporte | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Automatic vehicle location | en_US |
dc.subject.other | Automatic. public transport planning | en_US |
dc.subject.other | GPS data | en_US |
dc.subject.other | Intelligent transport systems | en_US |
dc.title | Methodology for analyzing the travel time variability in public road transport | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | bookPart | en_US |
dc.relation.conference | 11th International Conference on Ubiquitous Computing and Ambient Intelligence, (UCAmI 2017) | - |
dc.identifier.doi | 10.1007/978-3-319-67585-5_5 | en_US |
dc.identifier.scopus | 85031422470 | - |
dc.contributor.authorscopusid | 56495304700 | - |
dc.contributor.authorscopusid | 22986240200 | - |
dc.contributor.authorscopusid | 13006053800 | - |
dc.contributor.authorscopusid | 6506717943 | - |
dc.contributor.authorscopusid | 7401486323 | - |
dc.description.lastpage | 49 | en_US |
dc.description.firstpage | 44 | en_US |
dc.relation.volume | 10586 LNCS | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2017 | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.conferenceid | events121613 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 0,295 | |
dc.description.sjrq | Q2 | |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 07-11-2017 | - |
crisitem.event.eventsenddate | 10-11-2017 | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-5573-1156 | - |
crisitem.author.orcid | 0000-0002-8313-5124 | - |
crisitem.author.orcid | 0000-0002-7285-9194 | - |
crisitem.author.orcid | 0000-0003-1433-3730 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Padrón Morales, Gabino | - |
crisitem.author.fullName | Quesada Arencibia, Francisco Alexis | - |
crisitem.author.fullName | Alayón Hernández,Francisco Javier | - |
crisitem.author.fullName | García Rodríguez, Carmelo Rubén | - |
Colección: | Capítulo de libro |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
111
actualizado el 25-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.