Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/40196
Título: | Methodology for analyzing the travel time variability in public road transport | Autores/as: | Cristóbal Betancor, Teresa Padrón, Gabino Quesada-Arencibia, Alexis Alayón, Francisco García Rodríguez, Carmelo Rubén |
Clasificación UNESCO: | 3327 Tecnología de los sistemas de transporte 120304 Inteligencia artificial |
Palabras clave: | Automatic vehicle location Automatic. public transport planning GPS data Intelligent transport systems |
Fecha de publicación: | 2017 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 11th International Conference on Ubiquitous Computing and Ambient Intelligence, (UCAmI 2017) | Resumen: | The quality of the time travel prediction is a key factor in the transport of people and goods. This prediction is used in different facets related to management and planning of the transport activity, having special influence in the service quality in public transport. In this paper a methodology to analyse the factors which affect to travel time prediction in routes of road public transport is presented. This methodology uses vehicles GPS data to identify the causes of the travel time variability, georeferencing these causes. The infrastructure elements required, data used and the processing techniques are explained. The methodology was applied to analyse the travel time of a line of a public transport company, presenting the results of this test. | URI: | http://hdl.handle.net/10553/40196 | ISBN: | 978-3-319-67584-8 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-67585-5_5 | Fuente: | Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science, v. 10586 LNCS, p. 44-49 |
Colección: | Capítulo de libro |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.