Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40187
Campo DC Valoridioma
dc.contributor.authorCastrillón-Santana, M.en_US
dc.contributor.authorLorenzo-Navarro, J.en_US
dc.contributor.authorRamón-Balmaseda, E.en_US
dc.date.accessioned2018-06-07T11:52:48Z-
dc.date.available2018-06-07T11:52:48Z-
dc.date.issued2017en_US
dc.identifier.issn0262-8856en_US
dc.identifier.urihttp://hdl.handle.net/10553/40187-
dc.description.abstractGender classification (GC) has achieved high accuracy in different experimental evaluations based mostly on inner facial details. However, these results do not generalize well in unrestricted datasets and particularly in cross-database experiments, where the performance drops drastically. In this paper, we analyze the state-of-the-art GC accuracy on three large datasets: MORPH, LFW and GROUPS. We discuss their respective difficulties and bias, concluding that the most challenging and wildest complexity is present in GROUPS. This dataset covers hard conditions such as low resolution imagery and cluttered background. Firstly, we analyze in depth the performance of different descriptors extracted from the face and its local context on this dataset. Selecting the bests and studying their most suitable combination allows us to design a solution that beats any previously published results for GROUPS with the Dago's protocol, reaching an accuracy over 94.2%, reducing the gap with other simpler datasets. The chosen solution based on local descriptors is later evaluated in a cross-database scenario with the three mentioned datasets, and full dataset 5-fold cross validation. The achieved results are compared with a Convolutional Neural Network approach, achieving rather similar marks. Finally, a solution is proposed combining both focuses, exhibiting great complementarity, boosting GC performance to beat previously published results in GC both cross-database, and full in-database evaluations.en_US
dc.languageengen_US
dc.relation.ispartofImage and Vision Computingen_US
dc.sourceImage and Vision Computing [ISSN 0262-8856], v. 57, p. 15-24en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherCNNen_US
dc.subject.otherCross-databaseen_US
dc.subject.otherFace local contexten_US
dc.subject.otherGender classificationen_US
dc.subject.otherHOGen_US
dc.subject.otherInformation fusionen_US
dc.subject.otherLBPen_US
dc.subject.otherLocal descriptorsen_US
dc.subject.otherLOSIBen_US
dc.subject.otherLSPen_US
dc.titleDescriptors and regions of interest fusion for in- and cross-database gender classification in the wilden_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.imavis.2016.10.004en_US
dc.identifier.scopus85002608603-
dc.identifier.isi000393265800002-
dc.contributor.authorscopusid22333278500-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid55348020700-
dc.description.lastpage24en_US
dc.description.firstpage15en_US
dc.relation.volume57en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid32145428-
dc.contributor.daisngid2489695-
dc.contributor.daisngid6172066-
dc.identifier.externalWOS:000393265800002-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Castrillon-Santana, M-
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J-
dc.contributor.wosstandardWOS:Ramon-Balmaseda, E-
dc.date.coverdateEnero 2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,612
dc.description.jcr2,159
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-2768-1729-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameDe Ramón Balmaseda, Enrique José-
Colección:Artículos
miniatura
pdf
Adobe PDF (2,84 MB)
Vista resumida

Citas SCOPUSTM   

27
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

19
actualizado el 17-nov-2024

Visitas

134
actualizado el 26-oct-2024

Descargas

77
actualizado el 26-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.