Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/40187
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Castrillón-Santana, M. | en_US |
dc.contributor.author | Lorenzo-Navarro, J. | en_US |
dc.contributor.author | Ramón-Balmaseda, E. | en_US |
dc.date.accessioned | 2018-06-07T11:52:48Z | - |
dc.date.available | 2018-06-07T11:52:48Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.issn | 0262-8856 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/40187 | - |
dc.description.abstract | Gender classification (GC) has achieved high accuracy in different experimental evaluations based mostly on inner facial details. However, these results do not generalize well in unrestricted datasets and particularly in cross-database experiments, where the performance drops drastically. In this paper, we analyze the state-of-the-art GC accuracy on three large datasets: MORPH, LFW and GROUPS. We discuss their respective difficulties and bias, concluding that the most challenging and wildest complexity is present in GROUPS. This dataset covers hard conditions such as low resolution imagery and cluttered background. Firstly, we analyze in depth the performance of different descriptors extracted from the face and its local context on this dataset. Selecting the bests and studying their most suitable combination allows us to design a solution that beats any previously published results for GROUPS with the Dago's protocol, reaching an accuracy over 94.2%, reducing the gap with other simpler datasets. The chosen solution based on local descriptors is later evaluated in a cross-database scenario with the three mentioned datasets, and full dataset 5-fold cross validation. The achieved results are compared with a Convolutional Neural Network approach, achieving rather similar marks. Finally, a solution is proposed combining both focuses, exhibiting great complementarity, boosting GC performance to beat previously published results in GC both cross-database, and full in-database evaluations. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Image and Vision Computing | en_US |
dc.source | Image and Vision Computing [ISSN 0262-8856], v. 57, p. 15-24 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | CNN | en_US |
dc.subject.other | Cross-database | en_US |
dc.subject.other | Face local context | en_US |
dc.subject.other | Gender classification | en_US |
dc.subject.other | HOG | en_US |
dc.subject.other | Information fusion | en_US |
dc.subject.other | LBP | en_US |
dc.subject.other | Local descriptors | en_US |
dc.subject.other | LOSIB | en_US |
dc.subject.other | LSP | en_US |
dc.title | Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.imavis.2016.10.004 | en_US |
dc.identifier.scopus | 85002608603 | - |
dc.identifier.isi | 000393265800002 | - |
dc.contributor.authorscopusid | 22333278500 | - |
dc.contributor.authorscopusid | 15042453800 | - |
dc.contributor.authorscopusid | 55348020700 | - |
dc.description.lastpage | 24 | en_US |
dc.description.firstpage | 15 | en_US |
dc.relation.volume | 57 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 32145428 | - |
dc.contributor.daisngid | 2489695 | - |
dc.contributor.daisngid | 6172066 | - |
dc.identifier.external | WOS:000393265800002 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Castrillon-Santana, M | - |
dc.contributor.wosstandard | WOS:Lorenzo-Navarro, J | - |
dc.contributor.wosstandard | WOS:Ramon-Balmaseda, E | - |
dc.date.coverdate | Enero 2017 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,612 | |
dc.description.jcr | 2,159 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.orcid | 0000-0002-2768-1729 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
crisitem.author.fullName | De Ramón Balmaseda, Enrique José | - |
Colección: | Artículos |
Citas SCOPUSTM
27
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
19
actualizado el 17-nov-2024
Visitas
134
actualizado el 26-oct-2024
Descargas
77
actualizado el 26-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.